20 research outputs found

    Covariate adjustment increased power in randomized controlled trials: an example in traumatic brain injury.

    No full text
    OBJECTIVE: We aimed to determine to what extent covariate adjustment could affect power in a randomized controlled trial (RCT) of a heterogeneous population with traumatic brain injury (TBI). STUDY DESIGN AND SETTING: We analyzed 14-day mortality in 9,497 participants in the Corticosteroid Randomization After Significant Head Injury (CRASH) RCT of corticosteroid vs. placebo. Adjustment was made using logistic regression for baseline covariates of two validated risk models derived from external data (International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury [IMPACT]) and from the CRASH data. The relative sample size (RESS) measure, defined as the ratio of the sample size required by an adjusted analysis to attain the same power as the unadjusted reference analysis, was used to assess the impact of adjustment. RESULTS: Corticosteroid was associated with higher mortality compared with placebo (odds ratio=1.25, 95% confidence interval=1.13-1.39). RESS of 0.79 and 0.73 were obtained by adjustment using the IMPACT and CRASH models, respectively, which, for example, implies an increase from 80% to 88% and 91% power, respectively. CONCLUSION: Moderate gains in power may be obtained using covariate adjustment from logistic regression in heterogeneous conditions such as TBI. Although analyses of RCTs might consider covariate adjustment to improve power, we caution against this approach in the planning of RCTs

    Absence of electroencephalographic seizure activity in patients treated for head injury with an ICP targeted therapy

    No full text
    OBJECT: The authors prospectively studied the occurrence of clinical and nonclinical electroencephalographically verified seizures during treatment with an intracranial pressure (ICP)-targeted protocol in patients with traumatic brain injury (TBI). METHODS: All patients treated for TBI at the Department of Neurosurgery, University Hospital Umea, Sweden, were eligible for the study. The inclusion was consecutive and based on the availability of the electroencephalographic (EEG) monitoring equipment. Patients were included irrespective of pupil size, pupil reaction, or level of consciousness as long as their first measured cerebral perfusion pressure was > 10 mm Hg. The patients were treated in a protocol-guided manner with an ICP-targeted treatment based on the Lund concept. The patients were continuously sedated with midazolam, fentanyl, propofol, or thiopental, or combinations thereof. Five-lead continuous EEG monitoring was performed with the electrodes at F3, F4, P3, P4, and a midline reference. Sensitivity was set at 100 muV per cm and filter settings 0.5-70 Hz. Amplitude-integrated EEG recording and relative band power trends were displayed. The trends were analyzed offline by trained clinical neurophysiologists. RESULTS: Forty-seven patients (mean age 40 years) were studied. Their median Glasgow Coma Scale score at the time of sedation and intubation was 6 (range 3-15). In 8.5% of the patients clinical seizures were observed before sedation and intubation. Continuous EEG monitoring was performed for a total of 7334 hours. During this time neither EEG nor clinical seizures were observed. CONCLUSIONS: Our protocol-guided ICP targeted treatment seems to protect patients with severe TBI from clinical and subclinical seizures and thus reduces the risk of secondary brain injury
    corecore