459 research outputs found

    Multimodal characterization of carbon electrodes\u27 thermal activation for vanadium redox flow batteries

    Get PDF
    Thermal activation has proven to be a valuable procedure to improve the performance of carbon electrodes in vanadium redox flow batteries (VRFBs). This work investigates how different activation temperatures impact the rayon-based carbon felt\u27s structure, surface composition, wettability, and electrochemical activity. A unique combination of non-standard techniques, including atomic force microscopy (AFM), dynamic vapor sorption (DVS), and electrochemical impedance spectroscopy (EIS) combined with the distribution of relaxation times (DRT) analysis, was used for the first time in the context of VRFB electrodes. The wettability of the carbon felts improved, and the process impedances decreased with higher activation temperatures. However, severe carbon decomposition occurs at high activation temperatures. The optimum electrochemical performance of the carbon felts in the vanadium(IV)/vanadium(V) redox reaction was observed after activation at 400 °C. Thus, we conclude that the optimum activation temperature for this type of carbon felt concerning the investigated properties is around 400 °C. Furthermore, we want to highlight the successful approach of using AFM, DVS, and EIS combined with DRT analysis for an integral investigation of key properties such as structure, wettability, and performance of VRFB electrodes

    Efficient data processing and quantum phenomena: Single-particle systems

    Full text link
    We study the relation between the acquisition and analysis of data and quantum theory using a probabilistic and deterministic model for photon polarizers. We introduce criteria for efficient processing of data and then use these criteria to demonstrate that efficient processing of the data contained in single events is equivalent to the observation that Malus' law holds. A strictly deterministic process that also yields Malus' law is analyzed in detail. We present a performance analysis of the probabilistic and deterministic model of the photon polarizer. The latter is an adaptive dynamical system that has primitive learning capabilities. This additional feature has recently been shown to be sufficient to perform event-by-event simulations of interference phenomena, without using concepts of wave mechanics. We illustrate this by presenting results for a system of two chained Mach-Zehnder interferometers, suggesting that systems that perform efficient data processing and have learning capability are able to exhibit behavior that is usually attributed to quantum systems only.Comment: http://www.compphys.net/dl

    Theory of Vibrationally Inelastic Electron Transport through Molecular Bridges

    Full text link
    Vibrationally inelastic electron transport through a molecular bridge that is connected to two leads is investigated. The study is based on a generic model of vibrational excitation in resonant transmission of electrons through a molecular junction. Employing methods from electron-molecule scattering theory, the transmittance through the molecular bridge can be evaluated numerically exactly. The current through the junction is obtained approximately using a Landauer-type formula. Considering different parameter regimes, which include both the case of a molecular bridge that is weakly coupled to the leads, resulting in narrow resonance structures, and the opposite case of a broad resonance caused by strong interaction with the leads, we investigate the characteristic effects of coherent and dissipative vibrational motion on the electron transport. Furthermore, the validity of widely used approximations such as the wide-band approximation and the restriction to elastic transport mechanisms is investigated in some detail.Comment: Submited to PRB, revised version according to comments of referees (minor text changes and new citations

    Requirement of RIZ1 for cancer prevention by methyl-balanced diet

    Get PDF
    The typical Western diet is not balanced in methyl nutrients that regulate the level of the methyl donor S-adenosylmethionine (SAM) and its derivative metabolite S-adenosylhomocysteine (SAH), which in turn may control the activity of certain methyltransferases. Feeding rodents with amino acid defined and methyl-imbalanced diet decreases hepatic SAM and causes liver cancers. RIZ1 (PRDM2 or KMT8) is a tumor suppressor and functions in transcriptional repression by methylating histone H3 lysine 9. Here we show that a methyl-balanced diet conferred additional survival benefits compared to a tumor-inducing methyl-imbalanced diet only in mice with wild type RIZ1 but not in mice deficient in RIZ1. While absence of RIZ1 was tumorigenic in mice fed the balanced diet, its presence did not prevent tumor formation in mice fed the imbalanced diet. Unlike most of its related enzymes, RIZ1 was upregulated by methyl-balanced diet. Methyl-balanced diet did not fully repress oncogenes such as c-Jun in the absence of RIZ1. The data identify RIZ1 as a critical target of methyl-balanced diet in cancer prevention. The molecular understanding of dietary carcinogenesis may help people make informed choices on diet, which may greatly reduce the incidence of cancer

    Radiosensitization of HNSCC cells by EGFR inhibition depends on the induction of cell cycle arrests

    Get PDF
    The increase in cellular radiosensitivity by EGF receptor (EGFR) inhibition has been shown to be attributable to the induction of a G1-arrest in p53-proficient cells. Because EGFR targeting in combination with radiotherapy is used to treat head and neck squamous cell carcinomas (HNSCC) which are predominantly p53 mutated, we tested the effects of EGFR targeting on cellular radiosensitivity, proliferation, apoptosis, DNA repair and cell cycle control using a large panel of HNSCC cell lines. In these experiments EGFR targeting inhibited signal transduction, blocked proliferation and induced radiosensitization but only in some cell lines and only under normal (pre-plating) conditions. This sensitization was not associated with impaired DNA repair (53BP1 foci) or induction of apoptosis. However, it was associated with the induction of a lasting G2-arrest. Both, the radiosensitization and the G2-arrest were abrogated if the cells were re-stimulated (delayed plating) with actually no radiosensitization being detectable in any of the 14 tested cell lines. Therefore we conclude that EGFR targeting can induce a reversible G2 arrest in p53 deficient HNSCC cells, which does not consequently result in a robust cellular radiosensitization. Together with recent animal and clinical studies our data indicate that EGFR inhibition is no effective strategy to increase the radiosensitivity of HNSCC cells.</p

    Photon-Phonon-assisted tunneling through a single-molecular quantum dot

    Full text link
    Based on exactly mapping of a many-body electron-phonon interaction problem onto a one-body problem, we apply the well-established nonequilibrium Green function technique to solve the time-dependent phonon-assisted tunneling at low temperature through a single-molecular quantum dot connected to two leads, which is subject to a microwave irradiation field. It is found that in the presence of the electron-phonon interaction and the microwave irradiation field, the time-average transmission and the nonlinear differential conductance display additional peaks due to pure photon absorption or emission processes and photon-absorption-assisted phonon emission processes. The variation of the time-average current with frequency of the microwave irradiation field is also studied.Comment: 9 pages, 6 figures, submitted to Phys. Rev. B. accepted by Phys. Rev.

    Conductance Peak Height Correlations for a Coulomb-Blockaded Quantum Dot in a Weak Magnetic Field

    Full text link
    We consider statistical correlations between the heights of conductance peaks corresponding to two different levels in a Coulomb-blockaded quantum dot. Correlations exist for two peaks at the same magnetic field if the field does not fully break time-reversal symmetry as well as for peaks at different values of a magnetic field that fully breaks time-reversal symmetry. Our results are also relevant to Coulomb-blockade conductance peak height statistics in the presence of weak spin-orbit coupling in a chaotic quantum dot.Comment: 5 pages, 3 figures, REVTeX 4, accepted for publication in Phys. Rev.

    Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis

    Full text link
    In bulk systems, molecules are routinely identified by their vibrational spectrum using Raman or infrared spectroscopy. In recent years, vibrational excitation lines have been observed in low-temperature conductance measurements on single molecule junctions and they can provide a similar means of identification. We present a method to efficiently calculate these excitation lines in weakly coupled, gateable single-molecule junctions, using a combination of ab initio density functional theory and rate equations. Our method takes transitions from excited to excited vibrational state into account by evaluating the Franck-Condon factors for an arbitrary number of vibrational quanta, and is therefore able to predict qualitatively different behaviour from calculations limited to transitions from ground state to excited vibrational state. We find that the vibrational spectrum is sensitive to the molecular contact geometry and the charge state, and that it is generally necessary to take more than one vibrational quantum into account. Quantitative comparison to previously reported measurements on pi-conjugated molecules reveals that our method is able to characterize the vibrational excitations and can be used to identify single molecules in a junction. The method is computationally feasible on commodity hardware.Comment: 9 pages, 7 figure

    Spin states of the first four holes in a silicon nanowire quantum dot

    Full text link
    We report measurements on a silicon nanowire quantum dot with a clarity that allows for a complete understanding of the spin states of the first four holes. First, we show control of the hole number down to one. Detailed measurements at perpendicular magnetic fields reveal the Zeeman splitting of a single hole in silicon. We are able to determine the ground-state spin configuration for one to four holes occupying the quantum dot and find a spin filling with alternating spin-down and spin-up holes, which is confirmed by magnetospectroscopy up to 9T. Additionally, a so far inexplicable feature in single-charge quantum dots in many materials systems is analyzed in detail. We observe excitations of the zero-hole ground-state energy of the quantum dot, which cannot correspond to electronic or Zeeman states. We show that the most likely explanation is acoustic phonon emission to a cavity between the two contacts to the nanowire.Comment: 24 pages, 8 figures, both including supporting informatio

    MultiFit: a web server for fitting multiple protein structures into their electron microscopy density map

    Get PDF
    Advances in electron microscopy (EM) allow for structure determination of large biological assemblies at increasingly higher resolutions. A key step in this process is fitting multiple component structures into an EM-derived density map of their assembly. Here, we describe a web server for this task. The server takes as input a set of protein structures in the PDB format and an EM density map in the MRC format. The output is an ensemble of models ranked by their quality of fit to the density map. The models can be viewed online or downloaded from the website. The service is available at; http://salilab.org/multifit/ and http://bioinfo3d.cs.tau.ac.il/
    corecore