6 research outputs found

    Incorporation of a molybdenum atom in a Rubredoxin-type Centre of a de novo-designed α3DIV-L21C three-helical bundle peptide

    Get PDF
    PB would thank the PTNMRPhD (PD/00065/2013). VLP thanks the NIH for support (GM141086).The rational design and functionalization of small, simple, and stable peptides scaffolds is an attractive avenue to mimic catalytic metal-centres of complex proteins, relevant for the design of metalloenzymes with environmental, biotechnological and health impacts. The de novo designed α3DIV-L21C framework has a rubredoxin-like metal binding site and was used in this work to incorporate a Mo-atom. Thermostability studies using differential scanning calorimetry showed an increase of 4 °C in the melting temperature of the Mo-α3DIV-L21C when compared to the apo-α3DIV-L21C. Circular dichroism in the visible and far-UV regions corroborated these results showing that Mo incorporation provides stability to the peptide even though there were almost no differences observed in the secondary structure. A formal reduction potential of ∼ −408 mV vs. NHE, pH 7.6 was determined. Combining electrochemical results, EPR and UV–visible data we discuss the oxidation state of the molybdenum centre in Mo-α3DIV-L21C and propose that is mainly in a Mo (VI) oxidation state.publishersversionpublishe

    Reprogramming iPSCs to study age-related diseases: models, therapeutics, and clinical trials

    No full text
    The unprecedented rise in life expectancy observed in the last decades is leading to a global increase in the ageing population, and age-associated diseases became an increasing societal, economic, and medical burden. This has boosted major efforts in the scientific and medical research communities to develop and improve therapies to delay ageing and age-associated functional decline and diseases, and to expand health span. The establishment of induced pluripotent stem cells (iPSCs) by reprogramming human somatic cells has revolutionised the modelling and understanding of human diseases. iPSCs have a major advantage relative to other human pluripotent stem cells as their obtention does not require the destruction of embryos like embryonic stem cells do, and do not have a limited proliferation or differentiation potential as adult stem cells. Besides, iPSCs can be generated from somatic cells from healthy individuals or patients, which makes iPSC technology a promising approach to model and decipher the mechanisms underlying the ageing process and age-associated diseases, study drug effects, and develop new therapeutic approaches. This review discusses the advances made in the last decade using iPSC technology to study the most common age-associated diseases, including age-related macular degeneration (AMD), neurodegenerative and cardiovascular diseases, brain stroke, cancer, diabetes, and osteoarthritis.ALG-01-0145-FEDER-072586info:eu-repo/semantics/publishedVersio
    corecore