38 research outputs found

    History of migraine and volume of brain infarcts: The italian project on stroke at young age (IPSYS)

    Get PDF
    BACKGROUND AND PURPOSE: Migraine has been shown to increase cerebral excitability, promote rapid infarct expansion into tissue with perfusion deficits, and result in larger infarcts in animal models of focal cerebral ischemia. Whether these effects occur in humans has never been properly investigated. METHODS: In a series of consecutive patients with acute ischemic stroke, enrolled in the setting of the Italian Project on Stroke at Young Age, we assessed acute as well as chronic infarct volumes by volumetric magnetic resonance imaging, and compared these among different subgroups identified by migraine status. RESULTS: A cohort of 591 patients (male, 53.8%; mean age, 37.5±6.4 years) qualified for the analysis. Migraineurs had larger acute infarcts than non-migraineurs (median, 5.9 cm3 [interquartile range (IQR), 1.4 to 15.5] vs. 2.6 cm3 [IQR, 0.8 to 10.1], P<0.001), and the largest volumes were observed in patients with migraine with aura (median, 9.0 cm3 [IQR, 3.4 to 16.6]). In a linear regression model, migraine was an independent predictor of increased log (acute infarct volumes) (median ratio [MR], 1.64; 95% confidence interval [CI], 1.22 to 2.20), an effect that was more prominent for migraine with aura (MR, 2.92; 95% CI, 1.88 to 4.54). CONCLUSION: s These findings reinforce the experimental observation of larger acute cerebral infarcts in migraineurs, extend animal data to human disease, and support the hypothesis of increased vulnerability to ischemic brain injury in people suffering migraine

    Reciprocal learning: il confronto interculturale come dispositivo per la formazione degli educatori - insights da una ricerca tra Italia e Stati Uniti

    No full text
    The need to foster an “intercultural stance” beginning at the ECE level is a core theme in the current debate on how to support education practitioners working in multicultural settings. Changing one’s outlook, decentring, attempting to see educational phenomena from different angles, developing alternative perspectives are required skills for quality educational work in complex and multicultural educational contexts. How can we help ECEC educators to develop an educational culture that is open to intercultural dialogue and views cultural displacement as an opportunity for learning and exercising critical-reflexive thinking? Based on data from a professional development research project with groups of educators in Italy and the United States, this article discusses how video-mediated processes of intercultural dialogue, debate and exchange can help to foster the development of an appropriate educational stance (and not just educational tools) for multicultural settings.Il tema della formazione a una “postura interculturale” fin dai servizi per la prima infanzia è al centro della riflessione contemporanea su come sostenere gli educatori impegnati in contesti educativi multiculturali. Cambiare prospettiva, decentrarsi, provare a vedere i fenomeni educativi da un altro punto di vista, vedere altrimenti sono competenze oggi necessarie per garantire la qualità del lavoro educativo in contesti educativi complessi e multiculturali. Come formare gli educatori che già lavorano nei servizi per l’infanzia a una cultura pedagogica aperta al dialogo interculturale e capace di cogliere nello spiazzamento culturale un’occasione di formazione e di allenamento al pensiero critico-riflessivo?A partire dai dati emersi da una ricerca sulla formazione degli educatori che ha coinvolto alcune educatriciin Italia e negli Stati Uniti, l’articolo propone una riflessione su come i processi di dialogo, confronto e scambio interculturale, mediati da video, possano essere dispositivi interessanti per promuovere lo sviluppo di una postura e non solo di strumenti per l’azione educativa in contesti multiculturali.O tema da formação para uma “postura intercultural” desde os serviços para a primeira infância está no centro da reflexão contemporânea em como apoiar os/as educadores/as envolvidos/as em contextos educativos multiculturais. Mudar a perspectiva, descentralizar-se, tentar entender os fenômenos educativos de um outro ponto de vista, ver de outra forma, são competências hoje necessárias para garantir a qualidade do trabalho educativo em contextos educativos complexos e multiculturais. Como formar os/as educadores/as que já trabalham nos serviços para a pequena infância para uma cultura pedagógica aberta ao diálogo intercultural e capaz de aproveitar no reposicionamento cultural uma ocasião de formação e exercícios para o pensamento crítico-reflexivo? A partir dos dados obtidos numa pesquisa acerca da formação de educadores/as que envolveu algumas educadoras da Itália e dos Estados Unidos, o artigo propõe uma reflexão a respeito de como os processos de diálogo, de confronto e troca intercultural, mediados por vídeo, podem ser dispositivos interessantes para promover o desenvolvimento de uma postura e não somente como instrumentos de ação educativa em contextos multiculturais

    Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report

    No full text
    International audienceThe Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I Introduction to DUNE

    No full text
    International audienceThe preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    No full text
    International audienceLiquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    No full text
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 ×\times  6 ×\times  6 m3^3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties
    corecore