277 research outputs found

    Lymphatic filariasis epidemiology in Samoa in 2018: geographic clustering and higher antigen prevalence in older age groups

    Get PDF
    Background: Samoa conducted eight nationwide rounds of mass drug administration (MDA) for lymphatic filariasis (LF) between 1999 and 2011, and two targeted rounds in 2015 and 2017 in North West Upolu (NWU), one of three evaluation units (EUs). Transmission Assessment Surveys (TAS) were conducted in 2013 (failed in NWU) and 2017 (all three EUs failed). In 2018, Samoa was the first in the world to distribute nationwide triple-drug MDA using ivermectin, diethylcarbamazine, and albendazole. Surveillance and Monitoring to Eliminate LF and Scabies from Samoa (SaMELFS Samoa) is an operational research program designed to evaluate the effectiveness of triple-drug MDA on LF transmission and scabies prevalence in Samoa, and to compare the usefulness of different indicators of LF transmission. This paper reports results from the 2018 baseline survey and aims to i) investigate antigen (Ag) prevalence and spatial epidemiology, including geographic clustering; ii) compare Ag prevalence between two different age groups (5–9 years versus ≥10 years) as indicators of areas of ongoing transmission; and iii) assess the prevalence of limb lymphedema in those aged ≥15 years. Methods: A community-based cluster survey was conducted in 30 randomly selected and five purposively selected clusters (primary sampling units, PSUs), each comprising one or two villages. Participants were recruited through household surveys (age ≥5 years) and convenience surveys (age 5–9 years). Alere Filariasis Test Strips (FTS) were used to detect Ag, and prevalence was adjusted for survey design and standardized for age and gender. Adjusted Ag prevalence was estimated for each age group (5–9, ≥10, and all ages ≥5 years) for random and purposive PSUs, and by region. Intraclass correlation (ICC) was used to quantify clustering at regions, PSUs, and households. Results: A total of 3940 persons were included (1942 children aged 5–9 years, 1998 persons aged ≥10 years). Adjusted Ag prevalence in all ages ≥5 years in randomly and purposively selected PSUs were 4.0% (95% CI 2.8–5.6%) and 10.0% (95% CI 7.4–13.4%), respectively. In random PSUs, Ag prevalence was lower in those aged 5–9 years (1.3%, 95% CI 0.8–2.1%) than ≥10 years (4.7%, 95% CI 3.1–7.0%), and poorly correlated at the PSU level (R-square = 0.1459). Adjusted Ag prevalence in PSUs ranged from 0% to 10.3% (95% CI 5.9–17.6%) in randomly selected and 3.8% (95% CI 1.3–10.8%) to 20.0% (95% CI 15.3–25.8%) in purposively selected PSUs. ICC for Ag-positive individuals was higher at households (0.46) compared to PSUs (0.18) and regions (0.01). Conclusions: Our study confirmed ongoing transmission of LF in Samoa, in accordance with the 2017 TAS results. Ag prevalence varied significantly between PSUs, and there was poor correlation between prevalence in 5–9 year-olds and older ages, who had threefold higher prevalence. Sampling older age groups would provide more accurate estimates of overall prevalence, and be more sensitive for identifying residual hotspots. Higher prevalence in purposively selected PSUs shows local knowledge can help identify at least some hotspots

    Bridging topological and functional information in protein interaction networks by short loops profiling

    Get PDF
    Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship

    A randomized, comparative pilot trial of family-based interpersonal psychotherapy for reducing psychosocial symptoms, disordered-eating, and excess weight gain in at-risk preadolescents with loss-of-control-eating: SHOMAKER et al.

    Get PDF
    Preadolescent loss-of-control-eating (LOC-eating) is a risk factor for excess weight gain and binge-eating-disorder. We evaluated feasibility and acceptability of a preventive family-based interpersonal psychotherapy (FB-IPT) program. FB-IPT was compared to family-based health education (FB-HE) to evaluate changes in children’s psychosocial functioning, LOC-eating, and body mass

    Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Siedlecki, S. A., Salisbury, J., Gledhill, D. K., Bastidas, C., Meseck, S., McGarry, K., Hunt, C. W., Alexander, M., Lavoie, D., Wang, Z. A., Scott, J., Brady, D. C., Mlsna, I., Azetsu-Scott, K., Liberti, C. M., Melrose, D. C., White, M. M., Pershing, A., Vandemark, D., Townsend, D. W., Chen, C,. Mook, W., Morrison, R. Projecting ocean acidification impacts for the Gulf of Maine to 2050: new tools and expectations. Elementa: Science of the Anthropocene, 9(1), (2021): 00062, https://doi.org/10.1525/elementa.2020.00062.Ocean acidification (OA) is increasing predictably in the global ocean as rising levels of atmospheric carbon dioxide lead to higher oceanic concentrations of inorganic carbon. The Gulf of Maine (GOM) is a seasonally varying region of confluence for many processes that further affect the carbonate system including freshwater influences and high productivity, particularly near the coast where local processes impart a strong influence. Two main regions within the GOM currently experience carbonate conditions that are suboptimal for many organisms—the nearshore and subsurface deep shelf. OA trends over the past 15 years have been masked in the GOM by recent warming and changes to the regional circulation that locally supply more Gulf Stream waters. The region is home to many commercially important shellfish that are vulnerable to OA conditions, as well as to the human populations whose dependence on shellfish species in the fishery has continued to increase over the past decade. Through a review of the sensitivity of the regional marine ecosystem inhabitants, we identified a critical threshold of 1.5 for the aragonite saturation state (Ωa). A combination of regional high-resolution simulations that include coastal processes were used to project OA conditions for the GOM into 2050. By 2050, the Ωa declines everywhere in the GOM with most pronounced impacts near the coast, in subsurface waters, and associated with freshening. Under the RCP 8.5 projected climate scenario, the entire GOM will experience conditions below the critical Ωa threshold of 1.5 for most of the year by 2050. Despite these declines, the projected warming in the GOM imparts a partial compensatory effect to Ωa by elevating saturation states considerably above what would result from acidification alone and preserving some important fisheries locations, including much of Georges Bank, above the critical threshold.This research was financially supported by the Major Special Projects of the Ministry of Science and Technology of China (2016YFC020600), the Young Scholars Science Foundation of Lanzhou Jiaotong University (2018033), and the Talent Innovation and Entrepreneurship Projects of Lanzhou (2018-RC-84)

    Diagnosis of lethal or prenatal-onset autosomal recessive disorders by parental exome sequencing.

    Get PDF
    OBJECTIVE: Rare genetic disorders resulting in prenatal or neonatal death are genetically heterogeneous, but testing is often limited by the availability of fetal DNA, leaving couples without a potential prenatal test for future pregnancies. We describe our novel strategy of exome sequencing parental DNA samples to diagnose recessive monogenic disorders in an audit of the first 50 couples referred. METHOD: Exome sequencing was carried out in a consecutive series of 50 couples who had 1 or more pregnancies affected with a lethal or prenatal-onset disorder. In all cases, there was insufficient DNA for exome sequencing of the affected fetus. Heterozygous rare variants (MAF < 0.001) in the same gene in both parents were selected for analysis. Likely, disease-causing variants were tested in fetal DNA to confirm co-segregation. RESULTS: Parental exome analysis identified heterozygous pathogenic (or likely pathogenic) variants in 24 different genes in 26/50 couples (52%). Where 2 or more fetuses were affected, a genetic diagnosis was obtained in 18/29 cases (62%). In most cases, the clinical features were typical of the disorder, but in others, they result from a hypomorphic variant or represent the most severe form of a variable phenotypic spectrum. CONCLUSION: We conclude that exome sequencing of parental samples is a powerful strategy with high clinical utility for the genetic diagnosis of lethal or prenatal-onset recessive disorders. © 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • …
    corecore