474 research outputs found

    Prediction of the probability of large fires in the Sydney region of south-eastern Australia using components of fire weather.

    Get PDF
    The probability of large-fire (\u3e= 1000 ha) ignition days, in the Sydney region, was examined using historical records. Relative influences of the ambient and drought components of the Forest Fire Danger Index (FFDI) on large fire ignition probability were explored using Bayesian logistic regression. The preferred models for two areas (Blue Mountains and Central Coast) were composed of the sum of FFDI (Drought Factor, DF = 1) (ambient component) and DF as predictors. Both drought and ambient weather positively affected the chance of large fire ignitions, with large fires more probable on the Central Coast than in the Blue Mountains. The preferred, additive combination of drought and ambient weather had a marked threshold effect on large-fire ignition and total area burned in both localities. This may be due to a landscape-scale increase in the connectivity of available fuel at high values of the index. Higher probability of large fires on the Central Coast may be due to more subdued terrain or higher population density and ignitions. Climate scenarios for 2050 yielded predictions of a 20-84% increase in potential large-fire ignitions days, using the preferred model

    Analysis of variation in distance, number, and distribution of spotting in southeast Australian wildfires

    Get PDF
    Spotting during wildfires can significantly influence the way wildfires spread and reduce the chances of successful containment by fire crews. However, there is little published empirical evidence of the phenomenon. In this study, we have analysed spotting patterns observed from 251 wildfires from a database of over 8000 aerial line scan images capturing active wildfire across mainland southeast Australia between 2002 and 2018. The images were used to measure spot fire numbers, number of “long-distance” spot fires (> 500 m), and maximum spotting distance. We describe three types of spotting distance distributions, compare patterns among different regions of southeast Australia, and associate these with broad measures of rainfall, elevation, and fuel type. We found a relatively high correlation between spotting distance and numbers; however, there were also several cases of wildfires with low spot fire numbers producing very long-distance spot fires. Most long-distance spotting was associated with a “multi-modal” distribution type, where high numbers of spot fires ignite close to the source fire and isolated or small clumps of spot fires ignite at longer distances. The multi-modal distribution suggests that current models of spotting distance, which typically follow an exponential-shaped distribution, could underestimate long-distance spotting. We also found considerable regional variation in spotting phenomena that may be associated with significant variation in rainfall, topographic ruggedness, and fuel descriptors. East Victoria was the most spot-fire-prone of the regions, particularly in terms of long-distance spotting

    The proximal drivers of large fires: A Pyrogeographic study

    Get PDF
    Variations in global patterns of burning and fire regimes are relatively well measured, however, the degree of influence of the complex suite of biophysical and human drivers of fire remains controversial and incompletely understood. Such an understanding is required in order to support current fire management and to predict the future trajectory of global fire patterns in response to changes in these determinants. In this study we explore and compare the effects of four fundamental controls on fire, namely the production of biomass, its drying, the influence of weather on the spread of fire and sources of ignition. Our study area is southern Australia, where fire is currently limited by either fuel production or fuel dryness. As in most fire-prone environments, the majority of annual burned area is due to a relatively small number of large fires. We train and test an Artificial Neural Network’s ability to predict spatial patterns in the probability of large fires (>1,250 ha) in forests and grasslands as a function of proxies of the four major controls on fire activity. Fuel load is represented by predicted forested biomass and remotely sensed grass biomass, drying is represented by fraction of the time monthly potential evapotranspiration exceeds precipitation, weather is represented by the frequency of severe fire weather conditions and ignitions are represented by the average annual density of reported ignitions. The response of fire to these drivers is often non-linear. Our results suggest that fuel management will have limited capacity to alter future fire occurrence unless it yields landscape-scale changes in fuel amount, and that shifts between, rather than within, vegetation community types may be more important. We also find that increased frequency of severe fire weather could increase the likelihood of large fires in forests but decrease it in grasslands. These results have the potential to support long-term strategic planning and risk assessment by fire management agencies

    Haploidentical bone marrow transplants for hematological malignancies using non-myeloablative conditioning therapy and post-transplant immunosuppression with cyclophosphamide: results from a single Australian centre

    Get PDF
    Background: HLA haploidentical bone marrow transplantation is a treatment option in patients with hematological malignancies who have no available HLA matched donor, but is limited by conditioning regimen toxicity, graft failure, relapse and graft versus host disease. Aims: To demonstrate safety and efficacy of haploidentical bone marrow transplantation with nonmyeloablative conditioning and high-dose post-transplant cyclophosphamide in adult patients with leukaemia or lymphoma. Methods: 12 patients, median age of 51 years, underwent transplantation with T cell replete bone marrow from a haplotype matched relative. The conditioning regimen consisted of cyclophosphamide, fludarabine, and low-dose TBI. Post-transplant immunosuppression consisted of a single dose of cyclophosphamide 50 mg/kg on day 3, followed by oral tacrolimus and mycophenolate mofetil. Outcomes reported are overall survival, engraftment and chimerism, toxicity, and clinical outcome. Results: All patients had neutrophil recovery (median 14.5 days), and 11 of 12 had platelet engraftment (median 17 days). Two patients had autologous reconstitution. Seven of 9 assessable patients had complete donor chimerism. Four patients had grade II-III GvHD, and none had grade IV GvHD. Four patientsdeveloped limited stage chronic GvHD. Five patients with AML relapsed. Two patients died of non-relapse causes, both from other malignancies, and 5 patients remain alive and relapse free. Median overall survival was 324 days (range 88-1163). Conclusion: This regimen is feasible and well-tolerated in older patients with high risk leukemia or lymphoma, with minimal short-term toxicity, and low rates of GVHD. The proportion of disease-free survivors indicates a graft versus malignancy effect is present in survivors. Keywords: hematological malignancy, bone marrow transplant, haploidentical, post-transplant cyclophosphamid

    Haploidentical bone marrow transplants for hematological malignancies using non-myeloablative conditioning therapy and post-transplant immunosuppression with cyclophosphamide: results from a single Australian centre

    Get PDF
    Background: HLA haploidentical bone marrow transplantation is a treatment option in patients with hematological malignancies who have no available HLA matched donor, but is limited by conditioning regimen toxicity, graft failure, relapse and graft versus host disease. Aims: To demonstrate safety and efficacy of haploidentical bone marrow transplantation with nonmyeloablative conditioning and high-dose post-transplant cyclophosphamide in adult patients with leukaemia or lymphoma. Methods: 12 patients, median age of 51 years, underwent transplantation with T cell replete bone marrow from a haplotype matched relative. The conditioning regimen consisted of cyclophosphamide, fludarabine, and low-dose TBI. Post-transplant immunosuppression consisted of a single dose of cyclophosphamide 50 mg/kg on day 3, followed by oral tacrolimus and mycophenolate mofetil. Outcomes reported are overall survival, engraftment and chimerism, toxicity, and clinical outcome. Results: All patients had neutrophil recovery (median 14.5 days), and 11 of 12 had platelet engraftment (median 17 days). Two patients had autologous reconstitution. Seven of 9 assessable patients had complete donor chimerism. Four patients had grade II-III GvHD, and none had grade IV GvHD. Four patientsdeveloped limited stage chronic GvHD. Five patients with AML relapsed. Two patients died of non-relapse causes, both from other malignancies, and 5 patients remain alive and relapse free. Median overall survival was 324 days (range 88-1163). Conclusion: This regimen is feasible and well-tolerated in older patients with high risk leukemia or lymphoma, with minimal short-term toxicity, and low rates of GVHD. The proportion of disease-free survivors indicates a graft versus malignancy effect is present in survivors. Keywords: hematological malignancy, bone marrow transplant, haploidentical, post-transplant cyclophosphamid

    Forest fire management, climate change, and the risk of catastrophic carbon losses

    Get PDF
    Approaches to management of fireprone forests are undergoing rapid change, driven by recognition that technological attempts to subdue fire at large scales (fire suppression) are ecologically and economically unsustainable. However, our current framework for intervention excludes the full scope of the fire management problem within the broader context of fire−vegetation−climate interactions. Climate change may already be causing unprecedented fire activity, and even if current fires are within the historical range of variability, models predict that current fire management problems will be compounded by more frequent extreme fire-conducive weather conditions (eg Fried et al. 2004)

    Cost-effective prescribed burning solutions vary between landscapes in eastern Australia

    Get PDF
    Fire management agencies undertake a range of fire management strategies in an attempt to reduce the risk posed by future wildfires. This can include fuel treatments (prescribed burning and mechanical removal), suppression and community engagement. However, no agency has an unlimited budget and numerically optimal solutions can rarely be implemented or may not even exist. Agencies are trying to quantify the extent to which their management actions reduce risk across multiple values in the most cost-effective manner. In this paper, we examine the cost-effectiveness of a range of prescribed burning strategies across multiple landscapes in south-eastern Australia. Landscapes considered include vegetated areas surrounding the cities of Hobart, Melbourne, Adelaide, Canberra, and Sydney. Using a simulation approach, we examine the potential range of fires that could occur in a region with varying levels of edge and landscape prescribed burning treatment regimes. Damages to assets are measured for houses, lives, transmission lines, carbon and ecological assets. Costs of treatments are estimated from published models and all data are analyzed using multi-criteria decision analysis. Cost-effectiveness of prescribed burning varies widely between regions. Variations primarily relate to the spatial configuration of assets and natural vegetation. Regions with continuous urban interface adjacent to continuous vegetation had the most cost-effective fuel treatment strategies. In contrast, those regions with fragmented vegetation and discontinuous interfaces demonstrated the lowest cost-effectiveness of treatments. Quantifying the extent to which fuel treatments can reduce the risk to assets is vital for determining the location and extent of treatments across a landscape

    Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand

    Get PDF
    Levels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmospheric water demand, as measured by maximum daily vapour pressure deficit. The climatology of vapour pressure deficit can therefore be reliably used to predict forest fire risk under projected future climates. We find that climate change is projected to lead to widespread increases in risk, with at least 30 additional days above critical thresholds for fire activity in forest biomes on every continent by 2100 under rising emissions scenarios. Escalating forest fire risk threatens catastrophic carbon losses in the Amazon and major population health impacts from wildfire smoke in south Asia and east Africa.he authors acknowledge the New South Wales Government’s Department of Planning, Industry & Environment for providing funds to support this research via the NSW Bushfire Risk Management Research Hub. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. Some of the analysis was carried out on the National Computational Infrastructure (NCI) which is supported by the Australian Commonwealth Government

    How old is the Tasmanian cultural landscape? a test of landscape openness using quantitative land-cover reconstructions

    Get PDF
    Aim: To test competing hypotheses about the timing and extent of Holocene landscape opening using pollen-based quantitative land-cover estimates. Location: Dove Lake, Tasmanian Wilderness World Heritage Area, Australia. Methods: Fossil pollen data were incorporated into pollen dispersal models and corrected for differences in pollen productivity among key plant taxa. Mechanistic models (REVEALS-Regional Estimates of VEgetation Abundance from Large Sites) employing different models for pollen dispersal (Gaussian plume and Lagrangian stochastic models) were evaluated and applied in the Southern Hemisphere for the first time. Results: Validation of the REVEALS model with vegetation cover data suggests an overall better performance of the Lagrangian stochastic model. Regional land-cover estimates for forest and non-forest plant taxa show persistent landscape openness throughout the Holocene (average landscape openness similar to 50%). Gymnoschoenus sphaerocephalus, an indicator of moorland vegetation, shows higher values during the early Holocene (11.7-9 ka) and declines slightly through the mid-Holocene (9-4.5 ka) during a phase of partial landscape afforestation. Rain forest cover reduced (from similar to 40% to similar to 20%) during the period between 4.2-3.5 ka. Main conclusions: Pollen percentages severely under-represent landscape openness in western Tasmania and this bias has fostered an over-estimation of Holocene forest cover from pollen data. Treeless vegetation dominated Holocene landscapes of the Dove Lake area, allowing us to reject models of landscape evolution that invoke late-Holocene replacement of a rain forest-dominated landscape by moorland. Instead, we confirm a model of Late Pleistocene inheritance of open vegetation. Rapid forest decline occurred after c.4 ka, likely in response to regional moisture decline.Australian Research Council; AINSE AWARD [ALNGRA16024]; AINSE PGRA scholarship [12039]info:eu-repo/semantics/publishedVersio

    Fire regimes and carbon in Australian vegetation

    Get PDF
    Fires regularly affect many of the world\u27s terrestrial ecosystems, and, as a result, fires mediate the exchange of greenhouse gases (GHG) between the land and the atmosphere at a global scale and affect the capacity of terrestrial ecosystems to store carbon (Bowman et al. 2009). Variations in fire -regimes can therefore potentially affect the global, regional and local carbon balance and, potentially, climate change itself (Bonan 2008). Here we examine how variation in fire regimes (Gill 1975; Bradstock et al. 2002) will potentially affect carbon in fire-prone Australian ecosystems via interactions with the stocks and transfers of carbon that are inherent to all terrestrial ecosystems. There are two key reasons why an appreciation of fire regimes is needed to comprehend the fate of terrestrial carbon. First, the status of terrestrial carbon over time will be a function of the balance between losses (emissions) from individual fires (of differing type, season and intensity), which occur as a result of immediate combustion as well as mortality and longerterm decomposition of dead biomass, and carbon that accumulates during regeneration in the intervals between fires. The length of the interval between fires will determine the amount of biomass that accumulates. Second, fire regimes influence the composition and structure of ecosystems and key processes such as plant mortality and recruitment. Hence, alternative trajectories of vegetation composition and structure that result from differing fire regimes will affect carbon dynamics. We explore these themes and summarise the dynamic aspects of carbon stocks and transfers in relation to fire, present conceptual models of carbon dynamics and fire regimes, and review how variation in fire regimes may affect overall storage potential as a function of fireinduced losses and post-fire uptake in two widespread Australian vegetation types. We then appraise future trends under global change and the likely potential for managing fire regimes for carbon \u27benefits\u27, especially with respect to emissions
    corecore