840 research outputs found

    Dynamic Programming for Optimal Control of Set-Up Scheduling with Neural Network Modifications

    Full text link
    This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.Defense Advanced Research Projects Agency (90-0083

    Working Memory Networks for Learning Temporal Order, with Application to 3-D Visual Object Recognition

    Full text link
    Working memory neural networks are characterized which encode the invariant temporal order of sequential events. Inputs to the networks, called Sustained Temporal Order REcurrent (STORE) models, may be presented at widely differing speeds, durations, and interstimulus intervals. The STORE temporal order code is designed to enable all emergent groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor --> ART 2 --> STORE Model --> ART 2 --> Outstar Network.Defense Advanced Research Projects Agency (90-0083); British Petroleum (89-A1-1204); National Science Foundation (IRI 90-00530, IRI 87-16960); Air Force Office of Scientific Research (90-128, 90-0175

    Store Working Memory Networks for Storage and Recall of Arbitrary Temporal Sequences

    Full text link
    Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.Air Force Office of Scientific Research (90-0128, F49620-92-J-0225); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309); British Petroleum (89A-1204); Advanced Research Projects Agency (90-0083, N00014-92-J-4015); National Science Foundation (IRI-90-00539

    Working Memories for Storage and Recall of Arbitrary Temporal Sequences

    Full text link
    A working memory model is described that is capable of storing and recalling arbitrary temporal sequences of events, including repeated items. These memories encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system.Defense Advanced Research Projects Agency (90-0083); British Petroleum (89-A-1204); Office of Naval Research (N00014-91-J-4100); National Science Foundation (IRI 90-00530, IRI-90-24877); Air Force Office of Scientific Research (90-0175

    Working memory networks for learning multiple groupings of temporally ordered events: applications to 3-D visual object recognition

    Full text link
    Working memory neural networks are characterized which encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described that is based on the model of Seibert and Waxman [1].Air Force Office of Scientific Research (90-128, 90-0175); British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI 90-00530, IRI 87-16960

    Descriptive temporal template features for visual motion recognition

    Get PDF
    In this paper, a human action recognition system is proposed. The system is based on new, descriptive `temporal template' features in order to achieve high-speed recognition in real-time, embedded applications. The limitations of the well known `Motion History Image' (MHI) temporal template are addressed and a new `Motion History Histogram' (MHH) feature is proposed to capture more motion information in the video. MHH not only provides rich motion information, but also remains computationally inexpensive. To further improve classification performance, we combine both MHI and MHH into a low dimensional feature vector which is processed by a support vector machine (SVM). Experimental results show that our new representation can achieve a significant improvement in the performance of human action recognition over existing comparable methods, which use 2D temporal template based representations

    Wireless charging pad detection and alignment using a fisheye camera for electric vehicles

    Get PDF
    The market for electric vehicles is growing day by day and electric car chargers can be seen often on pavements of the major cities and towns. With this growing market, industry is already looking for another breakthrough, i.e. wireless vehicle charging. This is much like charging smart phones using wireless charging pads instead of plugging the vehicle in. Industry is exploring ways to charge Electric vehicles wirelessly when the car is parked over a charger on the ground beneath it. For the wireless charging to work, both elements must be well aligned. This paper explores using vision based approaches to provide the automatic recognition, localisation and tracking of an inductive plate for wireless car charging. Visual feedback is provided to a motion control system for accurate charger alignment

    STORE working memory networks for storage and recall of arbitrary temporal sequences

    Get PDF

    Feature tracking for automated volume of interest stabilization on 4D-OCT images

    Get PDF
    A common representation of volumetric medical image data is the triplanar view (TV), in which the surgeon manually selects slices showing the anatomical structure of interest. In addition to common medical imaging such as MRI or computed tomography, recent advances in the field of optical coherence tomography (OCT) have enabled live processing and volumetric rendering of four-dimensional images of the human body. Due to the region of interest undergoing motion, it is challenging for the surgeon to simultaneously keep track of an object by continuously adjusting the TV to desired slices. To select these slices in subsequent frames automatically, it is necessary to track movements of the volume of interest (VOI). This has not been addressed with respect to 4DOCT images yet. Therefore, this paper evaluates motion tracking by applying state-of-the-art tracking schemes on maximum intensity projections (MIP) of 4D-OCT images. Estimated VOI location is used to conveniently show corresponding slices and to improve the MIPs by calculating thin-slab MIPs. Tracking performances are evaluated on an in-vivo sequence of human skin, captured at 26 volumes per second. Among investigated tracking schemes, our recently presented tracking scheme for soft tissue motion provides highest accuracy with an error of under 2.2 voxels for the first 80 volumes. Object tracking on 4D-OCT images enables its use for sub-epithelial tracking of microvessels for image-guidance. © 2017 SPIE

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201
    corecore