
Boston University
OpenBU http://open.bu.edu
Cognitive & Neural Systems CAS/CNS Technical Reports

1994-03

Store Working Memory Networks
for Storage and Recall of Arbitrary
Temporal Sequences

https://hdl.handle.net/2144/2108
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/280813094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


STORE WORKING MEMORY NETWORKS FOR STORAGE 

AND RECALL OF ARBITRARY TEMPORAL SEQUENCES 

Gary Braclski, Gail A. Carpenter, and Stephen Crossberg 

September, 1992 

Revised: March 1994 

Technical Report CAS/CNS-92-028 

Pnrnission to copy without fee a.ll or part. or this rnateria.l is granted provided that: 1. the copies arc not made 
or dist.ribuv~d for din~ct cornrncrcia.l a.dva.nLa.ge, 2. the report Litle, a.uthor, docurnent nurnber, and n:lc-:asc-: 
date appear, and notice is given that copying is by !)(-:rrnission of the BOSTON UNIVERSITY CENTER 
FOH ADAPTIVE SYSTEMS AND DEJ>AI\TMENT OF COUNITIVI•: AND NEURAL SYSTEMS. To copy 
ot.hcnvise, or to republish, requires a. f(:<~ and/m sp(:cial pf::rmission. 

Copyright @ 1992 

Boston University C:env~r for Adaptive Syst<-:ms and 
lkpartJn<-:nL of ( :ognitive and Neural Systerns 

Ill Cnrnrnington Strcd 
Boston, MA 02215 



STORE WORKING MEMORY NETWORKS FOR STORAGE 
AND RECALL OF ARBITRARY TEMPORAL SEQUENCES 

Gary Bradskit, Gail A. Carpenter+, and Stephen Grossberg§ 
Center for Adaptive Systems 

and 
Department of Cognit;ive and Neural Systems 

Boston University 
111 Curnmington Street 

Boston, Massachusetts 02215 

September, 1992 

Revised: March 25, 1994 

Technical Report CAS/CNS-TR-92-028 
Boston, MA: Boston University 

Send request;; for reprints to: 

Professor Steplwn Grossbm-g 
Boston University 

Center for Adaptive Systems 
1 1 1 Curnmington Street 

Boston, MA 02215 

t Supported in part by the Air Force Office of Scientific Research (AFOSR 90-0128) and 
the Office of Naval Research (ONR N00014-91-.J-4100 and ONR N00014-92-.J-1:309). 

t Supported in part by British Petroleum (BP 89A-1204), ARPA (AFOSR 90-008:3 and 
ONR N00014-92-.J-4015), the National Science Foundation (NSF IRI-90-005:30), and the 
Office of Naval Research (ONR N00014-91-.J-4100). 

§ Supported in part by the Air Force Office of Scientific Research (AFOSR F49620-92-.J-
0225), ARPA (AFOSR 90-008:3 and ONR N00014-92-.J-4015) and the Ofiice of Nawrl Re
search (ONR N00014-91-.J-4100 and ONR N00014-92-.J-1:309). 

Acknowledgements: The authors wish to thank Cynthia E. Bradford and Diana Meyers 
for their valuable assistance in the preparation of the rnanm;cript. 



March 251 1994 

ABSTRACT 

Nemalnetwork models of working memory, called Sustained Temporal Order REcurrent 

(STORE) models, are described. 'I'hey encode the invariant temporal order of sequential 

events in short term memory (STM) in a way that mimics cognitive data about working 

memory, including prirnacy, recency, and bowed order and error gradients. As new items 

are presented, the pattern of previously stored items is invariant in the sense that, relative 

activations remain constant through time. This invariant temporal order code enables all 

possible groupings of sequential events to be stably learned and remembered in real time, 

even as new events perturb the system. Such a competence is needed to design self-organizing 

temporal recognition and planning systems in which any subsequence of events may need to 

be categorized in order to to control and predict future behavior or external events. STORE 

rnodels show how arbitrary event sequences rnay be invariantly stored, including repeated 

events. A preprocessor interacts with the working memory to represent event repeats in 

spatially separate locations. It is shown why at least two processing levels are needed to 

invariantly store events presented with va.ria.ble durations <Uld interstimulus intervals. It 

is also shown how network parameters control the type and shape of prirnacy, recency, or 

bowed temporal order gradients that will be stored. 
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1. Introduction: STORE Working Memory Models 
Working memory is a kind of short term memory (STM) whereby a temporally ordered 

sequence of events can be temporarily stored (Baddeley, 1986). Events that are stored in 
working memory may be sequentially recalled, or quickly erased by a distracting event, 
in contrast to long term memory (r;rM). A large experimental literature and a variety of 
rnodels elucidate the properties of working memory (Atkinson and Sbiffrin, 1971; Elman, 
1990; Grossberg, Hl70; Grossberg and Pepe, 1971; Gutfreund <Uld Mezard, 1988; Guyon, 
Personnaz, Nadal, and Dreyfus, 1988; .Jordan, 1986; Reeves and Sperling, 1986; Schreter 
and Pfeifer, 1989; Seibert, 1991; Seibert and Waxman, 1990a, 1990b; Wang and 1\rbib, 
1990). 

i\ class of dynamically defined working memory neural network models, called Sustained 
Temporal Order REcurrent (STORE) models, encode the temporal order of arbitrary se
quences of items. Larger STM activations are recalled first, and hence represent earlier 
items. The ratio of STM codes of previous inputs remains constant as new inputs enter 
working memory, even when input durations and interstimulns intervals vary widely. This 
invaria.nce property allows all possible groupings of sequential events to be stably learned and 
remembered in real time, because invariant activity ratios imply a learnable invariance of 
recognition codes in eornpetitive learning or self-organizing; feature map models that receive 
their: inputs from a STORE model. S'rORE models thus realize an Invariance Principle 
(Grossberg, HJ78a, 1978b) that enables chunks (compressed, categorical, or unitized rep
resentations) of variable size to be encoded in LTM in a. manner that is not destabilized 
as new items are added to previously learned sequences. Groosberg (1978a, 1978b) proved 
that the lnvarianc.e Principle implies tha.t items are not always stored in working memory 
with veridical temporal order. Thus the fundarnental constraint that temporal learning be 
stable implies that model working memories, like those of humans, do not always encode 
information in correct temporal order. Correspondingly, a, large cognitive database can be 
explained by STORE rnodels, as noted in Sections 2--4. 

Figure 1 

The basic, two-level rnorlel (S'J'ORE l) that is described in Section 2 encodes temporal 
order for input sequences whose items are not repeated (Bradski, Carpenter, and Grossberg, 
1991, 1992). This paper develops two extensions of the STORE 1 model. First, an STM de
ca.y tern1 in the STORE 2 class of models adds a parametric degree of freedom to the control 
of relative sizes of working rncrnory representations (Section 6). This physically important 
parameter facilitates the quantitative modeling of cognitive data. Another generalization 
of the model (STORE :3) extends syotern capabilities by allowing both repeated and non
repeated item sequences to be encoded and recalled (Sec:Lion 7). This is accomplished using 
either a Winner-'I'ake-1\ll (WTA) or a Positional Gradient Shift (PGS) preprocessor. Each 
preprocessor causes spatially distinct network nodes to become active when an input itern 
is repeated. 'I'his separation allows the network to invariantly store arbitrary sequences in 
working memory. In addition, a simplified, one-level model (STORE 0) is described a.ncl 
shown to be adequate for working memory coding and recall, provided that input durations 
are restricted (Section 5). This one-level model c:larifies why two levels are needed to in
variantly store items of variable duration. Section 8 includes other variants of the STORE 
model that illustrate the flexibility and scope of the STORE design. Section 9 describes 
applications of STORE models to temporal recognition, planning, and inference problems. 
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2. Invariance Principle and Normalization Rule 

The STORE neural network working memories are based upon algebraically character
ized working memories that were introduced by Grossberg (1978a, l978b). These algebraic 
working memories were designed to explain psychological data concerning working rnemory 
storage and recall. In these models, individual events are stored in working memory in such 
a way that the pattern of STM activity across event representations encodes both the events 
that have occurred and the temporal order in which they have occurred. In psychological 
terms, the working memory stores both item information and order information (Healy, 
1975; Lee and Estes, 1981; Ratcliff, 1978). The models also include a mechanism for reading 
out events in the stored temporal order. Relative activation strengths translate into order of 
performance. A nonspecific rehearsal wave opens a gate to read out stored activities. After 
rehearsal begins, the most active node reaches its output threshold fir;;t, then self-inhibits 
it;; activation via a negative feedback pathway to enable the next most active node to be 
rehear;;ed, and ;;o on, until all active nodes are reset. An event sequence can hereby be 
performed from STM even if it is not yet incorporated through learning into LTM, much as 
a new telephone number can be repeated the first tirne that it i;; heard. 

The large data base on working memory :-;bows that ;;tor age and performance of temporal 
order information from working memory is not <tlways veridical (Atkin;;on and Shiffrin, 1971; 
Baddeley, 1986; Reeves and Sperling, 1986). These deviations from veridical temporal order 
in STM were given an explanation by the algebraic working memory model as consequences 
of two design principles that have dear adaptive value. These principles are called the 
lnvariance Principle and the Normalization Rule (Grossberg, 1978a, 1978b). 

2.1. Invariance Principle: The spatial patterns of STM activation across the event 
repre;;entations of a working memory are ;;tored and re;;et in response to sequentially pre
sented events ;;o as to leave the ternporal order codes of all past event groupings invariant. 
In particular, a temporal li;;t of events in S'I'M preserves the ;;tability of previously learned 
LTM codes for familiar sublists of the list. For example, ouppose that the word MY bas 
previously been stored in a working memory's STM and has established a learned chunk in 
J:rM. Suppose that the word MYSELF is then stored for the first time in STM. The S'I'M 
encoding of MY as a ;;yllable of MYSELF may not be the same as its STM encoding as 
a word. On the other hand, MY's STM encoding as part of MYSELF should not cause 
forgetting of the LI'M code for MY as a word. If it did, familiar words, such a;; MY, could 
not be learned as parts of larger words, such as MYSELF., without eliminating the smaller 
word;; from the lexicon. More genemlly, new wholes could not be built from familiar part;; 
without erasing r;rM of the parts. 

The Invariance Principle can be algebraically realized as follows, provided that no list 
items are repeated. Assume for ;;implicity that the i 1" list item is preprocessed by a winner
take-all network. Each list item then activate;; a ;;ingle output node of the preprocessor 
network. Properties of the working memory a.!so hold if a finite set of output nodes is 
activated for each item. The winner-take-all case i;; de;;cribed herein for notational sim
plicity. Let the winner-take-all node that i;; activated by the i 1" item send a binary in
put I; to the first working memory level F1. Let x; denote the activity of the i 1" itern 
representation of F1• Suppose that I; is regi;;tered in working memory at time t;. At 
time l;, the activity pattern (:r:1(i;),x2(t;), .. . ,:c,(t;)) acros;; F1 stores tho cifect;; of the list 
h ,12, ... , I; of previous inputs. The input I; updates the activity values :tk(t;_J) to new 
values .r-k(t;) for all nodes k = 1,2, ... ,i according to the following rule: At timet;, the 
pattern (x:1 (ti-l), .7:z(ti-l ), ... , :ci-l Ui-1 )) of previouoly stored STM activities is multiplied 
by a common factor w; as the i 1" item is instated with some activity /hi· 

2 



March 25, 1.994 

This storage rule satisfies the Invariance Principle for the following reason. Suppose that 
F1 is the first level of a two-level competitive learning network (Grossberg, 1976). Then Fj 
sends signals to the second level F2 via an adaptive filter. The tota.l input to the jlh F2 node 
is L,kxkzki> where zki denotes the LTM trace, or adaptive weight, in the pa.th from the kth F1 

node to the Jih F2 node. In psyc:hologic:a.l terms, each active 1'2 node represents a. chunk 
of the F 1 activity pattern. When t~Je jth F2 node is active, the LTM wei,ghts zk

1 
converge 

toward :rk; m other words, the wmght vector becomes parallel to the 1• 1 ac:tJv1ty vector. 
When a new item is added to the list, the Invaria.nce Principle implies that the previously 
active items in the list will simply be multiplied by a. common factor, thereby maintaining 
a. constant ratio between the previously active items. Constant activity ratios imply that 
the former F\ activity vector rerna.ins p<1ra.llel to its weight vector a.s its magnitude changes 
under new inputs. Hence, a.dding new list items does not inva.lida.te the STM a.nd r;rM codes 
for sublists. In particular, the temporal order of items in each sublist, encoded a.s relative 
sizes of both the STM a.nd the I;rM variables, remains invariant. 

2.2. Normalization Rule: The Norma.liza.tion Rule algebraically instates t,he classical 
property of the limited capacity of STM (Atkinson and Shiffrin, 1971). According to this 
property, the total network STM activity across a.ll nodes can equal, or increase to, a finite 
maximum valueS' that is insensitive to the total number of active nodes; hence, is normalized. 
Parameter 8 characterizes the "limited capacity" of STM. In human subjects, this parameter 
is determined by biological constraints. In an artificial neural network, parameter 8 can be 
set at <1ny finite value. 

3. Relation to Speech and Language Data 

The) algebraic In variance Principle and N orrnalization Rule irnply (Grossberg, 1978b) 
that the pattern (:r1 , ... ,.r;) of stored STM activities can exhibit primacy (all.rk_ 1 > J:k), 
recency (all .rk_1 < :r:k), or bowing, which combines primacy for early items with recency 
for later items (Figure !c). Primacy, recency, and bowing correspond to properties of STM 
storage by human subjects. Model parameters are typically set so that the STM activity 
pattern exhibits a primacy gradient in response to a short list. Since more active nodes are 
read out of STM before less active nodes during perforrnance trials, primacy storage leads 
to the correct order of recall in response to a short list. Using the same parameters, the 
STM activity pat:tern exhibits a bow in response to longer lists, and approaches a recency 
gradient in response to still longer lists. An STM bow leads to perforrnance of items near 
the list beginning and end before items near the list middle. A la.rger STM activity at. a 
node also leads to a higher probability of recall from that node under circumstances when 
the network is perturbed by noise. An STM bow thus leads to earlier recall a.nd to a higher 
probability of recall frorn items a.t the beginnin~; a.ncl the end of a. list. 

These forma.! network properties are also properties of da.ta. from a variety of experiments 
a.bout working memory, such as free recall experiments during which hurnan subjects are 
asked to recall list items after being exposed to them once in a prescribed order (Atkinson 
and Shiffrin, 1971; Ilealy, 1975; Lee and Estes, 1981). Effects of LTM on free recall data 
have also been analysed by the theory (Grossberg, 1978a, 1978b), as have reaction time da.ta 
from experiments about the sequential performance of stored motor commands (Boardman 
and Bullock, 1991), da.ta concerning errors in serial item and order recall clue to rapid 
attention shifts (Grossberg and Stone, 1986a), data concerning errors and reaction times 
during lexical priming and episodic memory experiments (Grossberg and Stone, 1986b ), and 
data concerning word superiority, phonemic restoration, and backward effects on speech 
perception (Cohen and Grossberg, 1986; Grossberg, 1986). These data. explanations provide 
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converging evidence that working memory models which satisfy STORE design principles 
are used in the brain. The present article extends the computational capabilities of this class 
of models. 

4. The Basic Model: STORE 1 
In Bradski, Carpenter, and Grossberg (1992), we showed how neural networks could be 

defined which store invari<tnt and normalized activation patterns in working memory. These 
activation patterns are emergent properties of the network dynamics, rather than formal 
algebraic rules. Such a step is needed to encode complex events that may be occurring asyn
chronously in time, as well as to design hierarchies of working memories W1, W2, ... , Wn, .. . , 
such that each node of W, codes a compressed representation of a stored activation pattern 
across the working rnenwry Wn-l· The nodes of each successive Wn code "higher invariants" 
or "chunks" of the items coded by W1. 

The working memory model STORE l that was defined in Bradski, Carpenter, and 
Grossberg (1992) is a two-layer input-gatedneurai network (Figure 1a). The first layer (F1) is 
a competitive system, whose activity vector (x 1, x: 2 , ... , x,) represents working memory. The 
second layer (1'2) tracks and stores the STM activity of the first layer via its activity vect,or 
(YI, Y2, ... , Yn). Inputs are presented as a sequence of non-repeated items, with arbitrary 
intra-input durations a; and inter-input durations /1; (Figure lb). The ith input to the 
STORE 1 system consists of a unit input I; from the ith node of the input field F0. Input I; 
may represent activation of a recognition category that results from compressing a distributed 
representation of an individual event, or item, at an earlier processing level. The STORE 
input vector I then represents STM activity of a winner-take-all field (F(1) tha.t categorizes 
previously learned item recognition codes with a normalized activity. That is why inputs 
I; are chosen equal to 0 or 1. The STORE working memory responds to these normalized 
inputs by storing the temporal order of item representations. 

After entering working mernory, items stored at F1 are recalled in the order of their 
STM activities :rc, frorn largest to smallest. When system parameters are set so that F\ 
stores a primacy gradient (Figure 1c), therefore, items are recalled in the order in which 
they were presented. Other pararneter ranges yield patterns of bowing or recency in STM. 
The clirnensionless equations (1)(:l) de:>cribe the input a.nd STM of a S'I'ORE 1 systern 
(Figure 1 ). 

STORE 1: F0 Input 

l;(i)=U 

STORE 1: F'1 Working Memory 

if Ct; -· i; < i < i; 
otherwise. 

rl:r:; -(AI ·)I dt - i + Yi - X;J, , 

where :r = Lk :r:k and I= Lk h· 
STORE 1: F2 Stored Memory 

where Ic = 1 - 1. Initially, :r:;(O) = y;(O) = 0. 

4 

(1) 

(2) 

(:3) 



March 251 1994 

Analysis of STORE 1 (Bradski, Carpenter, and Grossberg, 1992) shows that the STM 
pattern at F1 stores a (veridical) primacy gradient if parameter A is small; that bowing 
can occur if 0 < A < 1; and that F1 stores a recency gradient if A ~ 1. These conclusions 
hold under the assumption that the F1 STM variables :rk relax to their steady-state values 
during each input presentation interval (/,;-a;, t;), when I = 1 in equation (2); and that 
the F2 STM variables Yk relax to their steady-state values during each inter-input interval 
[t;, t; + f:l;], when fC = I in equation (:3) (Figure I b). In a typical STORE I simulation, input 
durations were randomly varied between 10 and 40, with the input intervals (t;- i;_J) set 
equal to 50. Input duration variations do not aJfect the stored activity pattern. Insight into 
how STORE 1 works is provided in tenm of a mathematical <walysis of the more general 
STORE 2 model (Section G). In partieular, tbe nonspecific gain, or gating, term 1 in (2) 
enables the working memory activities to respond to inputs I; while they are on, since I= 1 
if any I; = 1. The complementary gating term JC in (:3) prevents the stored memories Yi 
from responding to inputs I; while they are on, since Jc = 0 if any I; = 1. Already stored 
activities Yi are hereby buffered aga.inst distort;ion by future inputs ly,j > i. Each stored 
activity Yi also influences its working rnemory activity x:; via (2), and thus the inhibitory 
effect of total activity x: on how strongly :ry is activated by Ij,.i > i. 

The constraint that :r; and Yi can approach their new equilibria in response to I; requires 
that the input presentation interval a; and the inter-input interval /l; (Figure lb) both be 
positive; infinitely fast presentation rates, with a; = (3; = 0 are not admissible. The input 
intervals a; and /l; may be arbitrarily small, however, provided that the rates with which 
1:; and Yi react are chosen large enough. Given fixed rates, the model exhibits a fastest 
input presentation rate beyond which succest:ive events cannot be resolved, as is also seen in 
brain data (Miller, 1981; Miller and Liberman, 1979; Repp, Liberman, Eccardt, and Pestsky, 
1978; Tarttar, Kat, Samuel, and Repp, 198:3). Data about variable-rate speech perception 
(Repp, Hl80, 198:l) have been simulated using a STORE model in which the :;torage rate is 
adjusted by automatic gain control to speed up or slow down with the speech rate, leading 
to a stored STM pattern that is invariant across a wide range of rates (Boardman, Cohen, 
and Grossberg, 199:3). 

5. The Reduced Model: STORE 0 
Before turning to the STORE 2 model, it is informative to ask whether the competence 

of STORE 1 can be achieved by a single-layer network. A single-layer system (STORE 0) 
can, in fact, encode an inva.ria.nt working memory, but a.t a cost of losing the robustness to 
input tirning that characterizes STORE l. 

Figure 2 

ln a single-layer STORE system, the S'fORE l po:;itive feedback loop 1'\ _, F2 ~ F\ 
(Figure la) is replaced with direct 1'\ ~ F'1 positive feedback (Figure 2). This is a natural 
simplification, since the STORE I variable Yk records and feeds back prior values of 1:k. 

Equation (4) describes S'I'M dynamics of the one-layer system: 

STORE 0: F'1 Working Memory 

where 1; satisfies (1 ). 

rb:;- (AI+'" ·r· ·r·)I dt - . i '''i- '·i·. ' 

Figure :l 

5 

(4) 
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Figure :la shows that, like STORE 1, STORE 0 can exhibit recency (A= 1.3), bowing 
(A= O.:l), and primacy (A = 0.04) gradients. Intuitively, parameter A is an index of the 
strength of the current input I; relative l:o the positive feedback term :1';. La.rge A enhances 
the influence of the current input Ii relative to the STM representation :r 1, ... , :r:;_1 of past 
inputs, and so produces a recency gradient. lnvariance is illustrated by the relative STM 
activities :rkf:rk+ 1 , which remain constant through time as new inputs are added. Figure :l 
also illustrates l:he normali~ation property; namely, the total F1 STM activity: 

' 
8; = 2.:= :tk(l:i) (5) 

k=l 

increases toward a constant asymptotic value 8 as the number of items stored in working 
memory increases. For both STORE 1 and STORE 0, 

8 = .5[1 + (1 + 4A) 112]. (6) 

Figure :3b illustrates that, unlike STORE 1, STORE 0 activity patterns are sensitive 
to input timing variations. In Figure :la, where a; = j); = 0. 75, STM bows at position 4 
when A= o.:l. In Figure :lb, where A also equals o.:l, bowing occurs later (position 7) when 
a;= o.:l; and earlier (position 2) when a;= 1.2. This property occurs in STORE 0 because 
STM values :rk (k < i) decay toward 0 when input Ii is on for a long interval. Thus temporal 
storage in STORE 0 requires that the duration a; of the input be short enough so t,hat, 
STM of previous items cannot reach a zero steady state. Shorter input dumtioris (smaller 
ai) give less weight to recent inputs, leading to a longer primacy gradient, while longer 
input durations (larger a;) enhance the recency gradient. The length of the interstimulus 
interval (13;) has no effect on the STORE 0 activity pattern, due to the gating term I in (4) 
that holds .r; constant when no input is present. T'hus STORE 0 is an adequate working 
memory insofar as input preprocessing guarantees approxirm1tely equal input durations and 
intensities. 

6. Control of STM Gradients: STORE 2 
STORE 1 is perhaps the simplest neural model that is capable of invariant encoding 

and recall of ternpora.l oequences in real tirne. However, with just one free parameter (A), 
S'I'M gradients tend to be steep. Addition of another term (and parameter) to the model 
provides a new degree of freedom that brings greater flexibility to applications and cognitive 
modeling. 

STORE 1 can be augmented in a variety of ways. One natura.! way is to include a 
working memory decay term ( -B:r;) to the description of the activations :r; at F'1; namely, 

STORE 2: F1 Working Memory 

dxi - (AI·+ y· '" ··1· LJ", ·)I dt - ' 2 - ••• , •• - ),,, • (7) 

Equations ( 1 ), (a), and (7) constitute the STORE 2 model, which retains the oame two-layer 
geometry as STORE 1 (Figure !a) and reduces to STORE 1 when B = 0. In that case, 
primacy, and veridical recall, occur for srnail A, which gives a current input Ji less weight 
than past items, whose presentation order is retained in the F2 values y], ... ,Yi-l· 

Figure 4 
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The decay term -Bx; modulates the steep STORE 1 activation gradients. Figure 4 shows 
the results of STORE 2 simulations that vary both the input strength parameter A and the 
STM decay parameter B. Each rectangle shows the evolving steady-state F\ STM values 
(:r: 1 ... x:7 ) as a sequence of inputs h, ... , I 7 is presented. For comparison, all activations 
xk(l.;) represented by the bar charts have been normalized by the total activity (x:(/. 7 )), after 
the final input. From the left column to the right column, the STM decay parameter B is seen 
to "smooth out" the steep prirm1cy gradient that often occurs in STORE 1. The additional 
degree of freedom in STORE 2 thus allows control of the shape of primacy, bowing, and 
recency curves, to keep STM values in a useable range, in particular above the noise level 
that may exist in real systems. We will now mathermitically analyse STORE 2 dynamics as 
a function of the two free parameters A and B. 

During presentation of the i 1" input to a STORE 2 system, when I.;- ct; < t < t;, 1; = 1 
and Vi = 0. Therefore 

so 

d:r, - A ·r· ·r '""· · dt.- . -· ''2•' ·- L),('tl 

A 
:r;~-1". 

x: + " 
Fork< i, h = 0 and Yk"" :r:N(i;_ 1) during this interval (Figure !b). Therefore 

so 

(8) 

(9) 

(I 0) 

(11) 

By (II), the prior working memory pattern (:r 1 ••. :~:;_ 1 ) is scaled by the common factor 
(x + B)-1 when input I; is being stored. Therefore relative activations are preserved, and 
STORE 2 satisfies the lnvarianc:e Principle. Note that storage of a new input I; causes a net 
amplification of the prior pattern (:r 1 ( i;_ 1) ... :r;_1 ( t;_ 1)) if and only if 

:r:(l.;) + B := 8; + B < 1, ( 12) 

by (5) and (11). 
Equations for total STM activity at F1 and F2 are obtained by summing equations (:l) 

and (7). Thus, setting y = Lk Yk> 

and 

d:r: (A 2 1.' )I di = · + y- :r - ":1: 

dy ( ) ... 
rl{=X-·;yl'. 

( 1:3) 

( 14) 

By design, y _, :~:(i;_r) in the interw1l [i;_1, 1.;_1 + {i;_r] between input I;_ 1 and input I; 
(Figure lb ), andy remains constant in the next interval (t;-ct;, t;) when input I; is presented. 
Thus, by (5) and (14), y(t;) ""a:(i;_ 1) = 8;_ 1; thus by (J:l), 

( 1 :J) 

7 
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Solving (15) then implies that the total F1 activity 1:(t;) = 8; is given by the iteration 
formula: 

(Hi) 

where 80 = 0. Thus by (IG), 81 > 8 0 . Comparison of (Hi) evaluated at S'; and at 8,+1 shows, 
by induction, that 

81 < S'z < ... < S'; < ... ( 17) 

at all times. 

Equations (Hi) and (17) C:<1n now be used to calculate the position at which the pattern 
(:c 1 , :c 2 , ••• , :c,) may bow. STORE 2 exhibits a primacy gradient so long as 

:c;_ 1(t;) > :r;(i;). ( 18) 

By (9) and (11), this occurs iff 
:ri-1 (t;_J) >A. ( 19) 

Thus, by (9) and (19), bowing occurs at the first position j = J at which 

(20) 

In addition, by (9), ( 17), and (20), 

(21) 

fori> J, since total F1 activity S'i grows monotonically as new inputs arrive, by (17). By 
(11) and (21), for all i > J, 

(22) 

In particular, if B 2: I in (20), then J = I and a recency gradient occurs. By (20), for 
0 s B < 1, bowing occurs at the first position j = J where 

8j?.1····B. (2:3) 

F'igure 5 

7. Repeated Input Items: STORE 3 
When order is encoded in S'rM activation levels and when, as in STORE 1 or STORE 2, 

each item is represented by just one node, repeated items in an input stream pose a problem. 
Namely, repeated items could increase the activation level of the corresponding node in such 
a way that the order information encoded by relative activations is lost. To solve this 
problem, S'I'ORE :l automatically create~ new internal representations when an input item 
is repeated. As in Figure 5, a prcproce~sor at level /~1 represents repeated items in ~patially 
separate channels. Both repeated and non-repeated item~ then enter level F1 as spatially 
separate inputs. In this way, a STORE :.l network can be viewed as a 2-D array of items x 
repeats. Two methods for spatially separating repeated items in level F0 are proposed here. 
The first uses inhibitory feedback from the STORE F2 level to a winner-take-all competitive 
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field F0 (STORE :l WTA) (Figure 5). The second uses a positional gradient shift at F'o 
(STORE 3 PGS) that does not require feedback from the STORE network. 

Figure G 

STORE 3 Winner-Take-All (WTA) Preprocessor 

Figtire G depicts the slice of the STORE :3 WTA network that encodes a single input 
I~ to the item representation CJ. A node that becomes active when item CJ is recognized is 
connected, via n pathways, to a repeated-item preprocessor F0, which in turn feeds into 
the STORE :l network. That is, each input r~ sends excitatory signals (rf I~, ... , r~I~) to 
an array of n nodes in a winner-take-all competitive field F0. Connection strengths rj are 
assumed to be fixed numbers that are randomly chosen in (0,1 ). The F0 node J that receives 
the largest input becomes active, while activity at other nodes is inhibited. When activity at 
the winning node exceeds a, threshold T, the corresponding Jlh node in the STORE 3 field 
F'f becomes active. After the input I~ goes off, massive inhibition from the active Jlh Ff 
node prevents subsequent activation of the Jih I'(; node, until the entire STORE network is 
reset. Inhibition from F'f allows repeated instances of input fer to excite distinct nodes in 
the winner-take-all network F0, which are chosen in order of decreaoing size of the strengths 
rj. 

Let CJi denote the ith item representation to be activated in <1ll event sequence. The 
STORE :l WTA network encodes an arbitrary input sequence I~,, fer,,, .. , Ier;, ... as follows. 

(A) For simplicity of notation, denote a fixed item representation CJi by CJ. Input f~; =fer 
fans out with nwdomly varying connection strengths rj to n nodes in the winner-take-all 
network F0 during the interval (ii- eti, ii)· 

(B) The F{) node (.J) with the largest weighted input (rjler) suppresses activity at the 
other nodes in I'(;. 

(C) When activity (wj) of the winning node exceeds a threshold (T), output from the 
Jlh F({ node excites the Jlh node of the STO FU~ :1 layer Pf. 

(D) After input 1~; shuts ofF (ti <; i <; ii + /1i), activity (yj) of each Ff node delivers 
positive feedback to the corresponding F{ node (:rj) and a large inhibitory signal -Eyj to 
the corresponding F0 node (wj). ln this way, each newly active F':f node inhibits subsequent 
activation of the corresponding node in F(f by repeats of the item CJ. 

(E) lf input fer is repeated, a different F(f node this becomes active. STORE 3 hereby 
treats repeated instances of a given input as if they were distinct inputs. 

The dimensionless STORE :3 WTA network is char<tcterizccl by ccpwtions (24)·(26). 
Table 1 describes STORE :3 pararnetcrs. 

'fable 1 

STORE 3 WTA: l~f Preprocessor 

dwq 
-i·tJ = C(-Dwj + ( 1 -wj)[.f( wi) + r'j 1~]- wj[I.; J(wr) + EyiJl, (21) 
(. kofj 

where I a(t) = 1 at t.imes i when i tern rJ is being presented, I er = 0 otherwise; rJ = 1,, . , I;; J = 
1 .. . n; and J(w) = F'w2 See Grossberg (197:3, 19R2) for an analysis of the dynamics of such 
shunting on-center off-surround networks. 

9 
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STORE 3 WTA: F{ Working Memory 

dx:o-
J -(A[ a- 'T'l+ + a- a- B- a-) I di; - Wj - . , y j - X j X - . Xj , (25) 

where :r = L:rr"L:j:Dj, I =L:rr I a-, and [z]+ = max(z,O). 

STORE 3 WTA: F'!J Stored Memory 

dy(T 
J - ('"(T jii(T) JC di - '''j -.,j ' (26) 

where Ic = I - I. 

Figure 7 

Figure 7 summarizes a computer simulation of the winner-take-all preprocessor of the 
STORE :l WTA layer F0. In Figure 7a, an input fa.ns out with varying connection strengths 
to seven nodes in the winner-ta.ke-a.ll network. Bar heights show evolving F0 activities wj 
during a. brief interval (0 <:; t <:; 0.06). The winner-ta.ke-a.ll dynamics enhance F0 activity at 
the node (J = 5) with maximum rj, and suppresses activity at other nodes (j t 5). Only the 
winning node exceeds the threshold (T) for sending a signal to F{ (equation 25). Figure 7b 
shows the results of seven repeats of input item I a-· Each instance activates a different F;) 
node, leading to spatially separated activations in layer F{. Figure 8 illustrates STORE :l 
working memory responses to various input sequences tha.t include repeated items. In each 
ca.se, F1 activity encodes the correct input order, given a small value of parameter A to 
ensure tha.t a. primacy gradient unfolds. 

Figure 8 

STORE 3 Position Gradient Shift (PGS) Preprocessor 
A second method of spatially separating repeated input items into different channels u:;es 

feeclforward excitatory and inhibitory posit;iona.l gradients to convert repeated inputs into 
changing locations in a spatial map. One such map, called a Position-Threshold-Slope (PTS) 
Shift map, was introduced by Gros:;berg and Kuperstein (1989) to transform different input. 
intensities into different spatial locations. Another map, called a Difference-of-Difference-of
Gaussiano (DO DOG), wao introduced by Gaudia.no and Grossberg (1991) to convert different 
ratios of two input intensities into different spatial locations. Either ma.p could be used 
herein a.s a preprocessor. If :;uc:cessive presentations of the same item are stored, then the 
total stored input increases with successive presentations and could be used a.s the input 
to a PTS Shift map. If each item input is broken into an excitatory a.nd inhibitory input 
pathway and successive item presentations are stored in the inhibitory pathway, then the 
ratio of inputs in the two pathways changes with successive presentations and could be used 
as the input. to a DO DOG rnap. 

The preprocessor that is described below is a variant of these models that realizes the 
desired mapping in a simple way. It is called a Pooition Gradient Shift (PGS) map. The 
PGS preprocessor includes inhibitory connections within the F!f {1eld, so inhibition does not 
need to feed back from F!f, as in the STORE :l WTA variant. Ea.ch input channel cr fans 
out via both excitatory and inhibitory connections, who:;e strengths fall off with distance, to 
a. winner-take-all field /"!f. In ea.ch charmel an inhibitory interneuron's activation A~ grows 
with ea.ch repeat of input cr. The growing inhibitory gradient allows a different node in P0 
to become a.etive with each repetition of Irr. As with the WTA preprocessor, each I'() node 
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is connected to the STORE :3 level F1, and each input event activates a different node in 
working memory. 

Figure 9 

Figure 9 shows the components of a positional gradient shift repeated item preprocessor. 
An transient cell activity 8"' converts a sustained input 1"'; =I"' of duration n; into a pulse 
of short fixed duration 6t via an inhibitory interneuron that shuts 0)"' off after a brief time 
delay. These pulses feed into an integrator cell whose activity AO' steps up with each transient 
pulse (C)"'. 

Figure 10 

Figure 10 shows slice CJ of the STORE :l PCS network. Input 1"'; = !"' both directly 
excites each l"Q node; and indirectly inhibits each node, via the integrator cell /\"'. Input /0' 
excites F0 nodes via signals whose size [/0'-1/+.i]+ decrm1ses linearly with distance away from 
the excitatory 1"' input node. Similarly the size of inhibitory signals [/\"' -11-.i]+ from the 
integrator cell to F0 nodes decreases linearly with distance. It is assurned that the strength 
of the excitatory connections decreases more slowly than that of the inhibitory connections, 
moving from the F0 cell .i = 1 toward the cell .i = n; that is, 11- > 11+· The combined effect 
of the excitatory input gradient from 10' and the growing inhibitory gradient from A"' is to 
shift by one node the locus of maximal F0 activation with eacb repeat of item CJ •. In this 
manner, repeated inputs are spatially separated before their order is encoded in the STORE 
network, without using any feedback from the STORE network levels F1 or F2. 

Equations (27)-(:H ), along with the P] equation (25) and the 1'2 equation (26), charac
terize the STORE :l PGS system. PararneCers are given in Table 2. 

Table 2 

STORE 3 PGS: F'Q Preprocessor 
Sustained Input 

for li- cti < t < ti, when O'i = CJ 

otherwise 

Transient Node 

Inhibitory Integrator Node 

for i; ·- ct; < t < t; - a; + 61 
otherwise 

Excitatory Gradient Signals to F0· 

Inhibitory Gradient Signals to F0 

11. 

(27) 

(28) 

(29) 

(:30) 

(:31) 
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where 11- > 71+ > 0; j = 1, ... ,n; and[,>_]+= max(>-,0). 

F0 Winner-Take-All 

dw" 
d/ = C [ -Dwj +(I a - wj) [f(wj) + (/!j(I a)]- wj [I:/( wk) + E(/!j (A a)]]. (:32) 

kf.j 

Figure I 1 

Figure 11 shows how the STORE :3 PGS model records repeated items in working 
memory. In Figure lla, the fifth F{( node (w5) receives the greatest combined input, 
[I a- 571+]+- [Aa- 5rJ_J+ when J is repeated for the fifth time. It therefore wins the compe
tition and suppresses activity of the other l~f nodes. The fifth node of F{ then records in 
working memory the fifth instance of item J. Figure 11 b shows the evolving storage of seven 
repeats of item J in working memory. Repeated items are seen to be proces-sed into spatially 
separate channels prior to entering the STORE :3 network, where their order is subsequently 
encoded. 

8. Alternative STORE Systems 
The STORE idea of using two gated layers to create a working memory that invariantiy 

records item and order inforrnation can be implemented in many ways. Three such systems 
are discussed below to illustrate variations on this general design theme. The first system is: 

STORE 2A: F1 Working Memory 

dx:; ( 1" I ) I dt = :~:; ' + Vi + . i ( :l:3) 

a.long with equations ( 1) and (:3). In (:J:l), 

F= A+ Bv-:t (:34) 

where A > 0, 0 < B < 1, :r = Li :r;, and v = Li Vi· In (:3:3), both excitatory and inhibitory 
nonspecific feedback are allowed to rnodulatc each :t;, with inhibitory feedback stronger. 
Figure 12 demonstrates that bowing can occur at <tny position, with gradual STM primacy 
and recency gradients. Input dma.tion wa.s varied randomly frorn rY; = 10 torY;= 4-0 without 
affecting order of storage. 

Figure 12 

The second systen1 symmetrizes tlw feedback between P\ and F'z: 
STORE 2B: F1 Working Memory 

d:t; ( . 1' I ) I dt = :t; ' +Vi+ i (:.15) 

STORE 2B: F'z Stored Memory 

dvi ·- ( (' ) JC ([[- Yi '+X; , (36) 

12 
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where F' is defined as in (:34) and 

G=AtB:r-y, (:37) 

Figure I :3 shows STORE 2B simulations with parameters set for primac:y, Inputs were entered 
singly; two at a time; 2, I, :1,2 at a time; then in a pattern of :3, 1, :3, 1, This demonstrates 
that invariance is preserved even if inputs do not arrive sequentially, 

Figure J:l 

The third sy;;tern uses: 

STORE 2C: F1 Working Memory 

r~;~i =(AI;+ f(y)y;- :r:;)I, (:18) 

along with equations (1) and (:3), In the other STORE 2 models, nonspecific inhibitory 
feedback ( -:r:) increases its effect on x; as more items are stored, In STORE 2C, there is no 
nonspecific inhibitory feedback :r:, It is replaced by nonspecific excitatory feedback f(y) that 
decreases its effect on y; a;; more items are stored, Thus f(y) in (:38) is a positive clecreaBing 
function of total F'2 activity y, such as 

f(y) = f{- cy, (:39) 

where](> 1 and 0 < c::; L The position of the bow in STORE 2C depends on where f(y) 
becomes lesB than I, Simuhttion results for STORE 2C are shown in Figure 14 where bowing 
at various positions is dernonstratecL 

Figure 14 

9, Recognition and Prediction of Temporal Event Sequences 
Invariant working mernories are typica.lly applied, in both biological and technological 

application~, as part of larger systcm1 architecture~, The ability to stably learn to group 
sequences of real~tirne c~vent~ i~ u~eful in applications to variable~rate speech perception, 
sensory~rnotor planning, and :3~D vi~ual object recognition, In speech perception appli~ 
cations, such groupings include phonemic, syllabic, and word representations (Cohen and 
Grossberg, 1986; Grossberg, 1986), In :;en~ory~motor planning, the groupings arc often 
~equences of target; position commands which de~cribe spatial or motor representations of 
desired limb configurations (Grossberg and Kuperstein, 1989), In 3~D visual object recogni~ 
tion, the individual item~ represent individual views of an object (Bradski, Carpenter, and 
Grossberg, 1992), Grouped item sequences irnplicitly represent a :l~D object in terms of a 
stored sequence of 2~D views, 

More generally, invariance properties of a STORE network enable them to be used as a 
processing ~ub~trate from which temporally evolving recognition codes, rules, or inference:; 
may be learned, In particular, a STORE model can be used as the input level of a neural 
network categorizer or production system, A mcently discovered family of Adaptive Reso~ 
nance Theory networks, generically called ARTMAP (Carpenter and Grossberg, 1991, 1992; 
Carpenter, Gros:;berg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Gro~sberg, and 
Reynolds, 1991), is capable of supervised learning, categorization, and inference about arbi~ 
t.rary input vectors, In particular, AHTMAPs can learn arbitrary analog or binary mappings 
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between lca.rnecl categories of an input feature space (e.g., <1 STORE item and order code) to 
learned categories of an output feature space (e.g., predictions or names). A predictive error 
to the output feature space drives a bout of hypothesis testing to discover, focus attention 
upon, and learn about a more informative bundle of features in the input space. Using such 
bouts of hypothesis testing, AHTMAP architectures are capable of autonomously learning 
many-to-one and one-to-many mappings frorn input to output categories. A user can extract 
from these maps an algorithmic set of if-then rules at any stage of learning. ARTMAPs thus 
embody a type of self-organizing production system which sheds new light on bow humans 
can realize rule-like behavior although their brains are not algorithmically structured in any 
traditional sense. These networks also embody heuristics which enable them to use predictive 
errors to match the degree of generalization of their learned categ.·ories, and the abstractness . . 

of their learned rules, to the demands of a particular input environment. 

An architecture that combines AHT and STORE networks is generically called an AHT
STORE systern (Bra.dski, Carpenter, and Grossberg, 1992). Because a STORE model satis
fies the Invariance Principle, an AH:T'STOH.E system can selectively attend and learn those 
stored sequences of past events or actions that predict a desired outcome. Uoing these 
properties, AHTSTORE models provide a promising new approach to solving the subgoal 
planning problems that form a. core part of human and animal problem solving in complex 
and rapidly changing environments. 

14 
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FIGURE CAPTIONS 

Figure 1. (a) Two-layer STORE 1 model. Layer F1 is a competitive network whose variables 
:r:k relax to steady state when an input is active in F11 • Level F2 variables Yk track F1 activity 
when inputs are off. In STORE 1 iterns are not repeated within a single working memory 
sequence. (b) Input timing. (c) An input sequence whose items enter in the order A, B, C: 
can be stored in F1 as a primacy, bowed, or recency gradient. The height of a line indicates 
the level of STM activity. 

Figure 2. Single-layer STORE 0 model. 

Figure 3. STORE 0 STM activity patterns at F\ depend on the length of the input 
presentation interval (1:;- ct;,i;). (a) Recency (A= J.:l), bowing (A= O.:l), and prirna.cy 
(A = 0.04) gradients with the input presentation interval ( o:;) held fixed. (b) Sensitivity to 
o:; with parameter A held fixed at O.O:l. A shorter input interval ( o:; = O.a) gives less weight to 
recent inputs, resulting in a stronger primacy gradients. A longer input interval (o:; = 1.2) 
strengthens the recency gradient. STORE 0 exhibits invariance (constant :~:kf:rk+ 1 ) and 
normalization (total activity 8; increasing towards an asymptotic value that is independent 
of the number of active nodes). 

Figure 4. STORE 2. Steady state activations (x:1 , ... , x7 ) normalized by total activity 
:r:(l1 ). The decay parameter B is seen to moderate the primacy gradient. Arrows indicate 
bow position. 

Figure 5. STOIU<; :J WTA. Repeated items are filtered <1t F'o into spatially separate channels 
and thus enter the STORE network as if they were separate inputs. An input I~ activates 
one of n node;; in the F'o layer of the !Tth "slice". 

Figure 6. Slice J of the S'fOitE :l WTA network: Repeated input items are separated into 
spatially distinct channels prior to enr:oding by STORE. Input I~ fans out with randornly 
varying connection strength;; Tj into a. winner-take-all field F(f. l.nhibition from F!J to 1~) 

prevents subsequent activation of the j 111 F0 node. A repeat of input I~ then causes another 
F(f node to become active. 

Figure 7. (a) F(J chooses the node J = 5 with maximum path strength Tj- F'({ reaches 
steady state rapidly compared to the input presentation time ;,cale (o:i = f1i = 25). (b) Seven 
repeats of item Iff activate seven different F'({ nodes. A working memory activation pattern 
at Ff can be used to learn and recall this ;,equence. Parameters are given in Table 1. 

Figure 8. Response of S'J'OH.E :3 WTA working rnemory to sequences with repeated items. 
Bar heights represent equilibrated activations :rj in F'1 , where input order is correctly en
coded. ParameterB are given in Table I. 

Figure 9. STORE :l PGS integrator subcircuit. 

Figure 10. STO H.E :) PGS network. 
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Figure 11. STORE :3 PGS simulation. (a) Upon the fifth repetition of input; fer, node .J = 5 
wins the competition at F0. (b) Increasing inhibition from the integrator node Acr allows 
successive Fff nodes j = 1, ... , 7 t;o become active as I" is presented seven times. STORE :3 
records the seven repetitions in working rnernory. 

Figure 12. STORE 2A. Bowing can occur in any posiUon for this network. For each run, 
input durat;ions were varied randomly from Cti = 10 to ai = 40 without affecting order of 
storage. 

Figure 13. STORE 213. In this simulation, parameters were set; t;o exhibit primacy over 
eight input presentations. Inputs were entered in different patterns: singly, doubly, and in 
patters of 2, 1, :l, 2, ancl :3, 1, :3, 1 as a demonstration that STORE networks can handle inputs 
in parallel if required. Simultaneous inputs are encoded with identical activation levels. 
Parameters in thi0 system can also be set for arbitrary bow positions. 

Figure 14. STORE 2C derived from algebraic constraints. 
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Parameter Description 

A = 0.02 Small, for primacy (Figure :3) 

B = 0.7 Modulate F1 gradient (STORE 2) 

C: = 10 F'o ~equilibrium before F1 active 

D = 0.01 Slow decay at F() 

E = 1000 > > I : for Yj to quench wj 

F = 40 Large: rapid choice at F(J 

T = 0.5 Prevent F0 transients from activating F! 

0 < rj < I Random coeflicients; 

n=7 

(1; = 25 

here, Tj > T2 > ... > T?,: 

Maximum number repetitions/item 

Intra-input duration (>> 1) 

Inter-input duration (>> 1) 

Table 1: STORE :l WTA parameters. 
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Parameter Description 

A= 0.02 Small, for prirnacy 

B = 0.7 Modulate F\ gradient 

C = I 0 Fo ~ equilibrium before F\ active 

D = 0.01 Slow decay at F0 
E = 8 Inhibition weighting factor influence;; choice 

F' = 40 Large: rapid choice at P(f 

T = 0.5 Prevent F0 tranoients frorn activating F{ 

!:::,£ = 0.1 Input pulse duration 

7]+ = 0.05 Excitatory signal falloff slope 

11- = 0.1 Inhibitory signal fallofF slope(> 7J+) 

n = 7 Maximum number repetitions/item 

rti = 25 Intra-input duration(>> 1) 

/li = 25 Inter-input duration (>> l) 
~~~~~---'- ·-··--·--··--·· .:.......~.:.......~~~~-

Table 2: STO H.E :l PGS parameter summary. 
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