6,951 research outputs found

    LSST optical beam simulator

    Full text link
    We describe a camera beam simulator for the LSST which is capable of illuminating a 60mm field at f/1.2 with realistic astronomical scenes, enabling studies of CCD astrometric and photometric performance. The goal is to fully simulate LSST observing, in order to characterize charge transport and other features in the thick fully depleted CCDs and to probe low level systematics under realistic conditions. The automated system simulates the centrally obscured LSST beam and sky scenes, including the spectral shape of the night sky. The doubly telecentric design uses a nearly unit magnification design consisting of a spherical mirror, three BK7 lenses, and one beam-splitter window. To achieve the relatively large field the beam-splitter window is used twice. The motivation for this LSST beam test facility was driven by the need to fully characterize a new generation of thick fully-depleted CCDs, and assess their suitability for the broad range of science which is planned for LSST. Due to the fast beam illumination and the thick silicon design [each pixel is 10 microns wide and over 100 microns deep] at long wavelengths there can be effects of photon transport and charge transport in the high purity silicon. The focal surface covers a field more than sufficient for a 40x40 mm LSST CCD. Delivered optical quality meets design goals, with 50% energy within a 5 micron circle. The tests of CCD performance are briefly described.Comment: 9 pages, 9 figure

    A Mouse Amidase Specific for N-terminal Asparagine: the gene, the enzyme, and their function in the N-end rule pathway

    Get PDF
    The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In both fungi and mammals, the tertiary destabilizing N-terminal residues asparagine and glutamine function through their conversion, by enzymatic deamidation, into the secondary destabilizing residues aspartate and glutamate, whose destabilizing activity requires their enzymatic conjugation to arginine, one of the primary destabilizing residues. We report the isolation and analysis of a mouse cDNA and the corresponding gene (termed Ntan1) that encode a 310-residue amidohydrolase (termed NtN-amidase) specific for N-terminal asparagine. The ~17-kilobase pair Ntan1 gene is located in the proximal region of mouse chromosome 16 and contains 10 exons ranging from 54 to 177 base pairs in length. The ~1.4-kilobase pair Ntan1 mRNA is expressed in all of the tested mouse tissues and cell lines and is down-regulated upon the conversion of myoblasts into myotubes. The Ntan1 promoter is located ~500 base pairs upstream of the Ntan1 start codon. The deduced amino acid sequence of mouse NtN-amidase is 88% identical to the sequence of its porcine counterpart, but bears no significant similarity to the sequence of the NTA1-encoded N-terminal amidohydrolase of the yeast Saccharomyces cerevisiae, which can deamidate either N-terminal asparagine or glutamine. The expression of mouse NtN-amidase in S. cerevisiae nta1Delta was used to verify that NtN-amidase retains its asparagine selectivity in vivo and can implement the asparagine-specific subset of the N-end rule. Further dissection of mouse Ntan1, including its null phenotype analysis, should illuminate the functions of the N-end rule, most of which are still unknown

    Sensitivity Analysis of a Comprehensive Model for a Miniature-Scale Linear Compressor for Electronics Cooling

    Get PDF
    A comprehensive model of a linear compressor for electronics cooling was previously presented by Bradshaw et al. (2011). The current study expands upon this work by first developing methods for predicting the resonant frequency of a linear compressor and for controlling its piston stroke. Key parameters governing compressor performance – leakage gap, eccentricity, and piston geometry – are explored using a sensitivity analysis. It is demonstrated that for optimum performance, the leakage gap and frictional parameters should be minimized. In addition, the ratio of piston stroke to diameter should not exceed a value of one to minimize friction and leakage losses, but should be large enough to preclude the need for an oversized motor. An improved linear compressor design is proposed for an electronics cooling application, with a predicted cooling capacity of 200 W a cylindrical compressor package size of diameter 50.3 mm and length 102 mm

    Flexible Causal Inference for Political Science

    Get PDF
    Measuring the causal impact of state behavior on outcomes is one of the biggest methodological challenges in the field of political science, for two reasons: behavior is generally endogenous, and the threat of unobserved variables that confound the relationship between behavior and outcomes is pervasive. Matching methods, widely considered to be the state of the art in causal inference in political science, are generally ill-suited to inference in the presence of unobserved confounders. Heckman-style multiple-equation models offer a solution to this problem; however, they rely on functional-form assumptions that can produce substantial bias in estimates of average treatment effects. We describe a category of models, flexible joint likelihood models, that account for both features of the data while avoiding reliance on rigid functional-form assumptions. We then assess these models’ performance in a series of neutral simulations, in which they produce substantial (55% to 90%) reduction in bias relative to competing models. Finally, we demonstrate their utility in a reanalysis of Simmons’ (2000) classic study of the impact of Article VIII commitment on compliance with the IMF’s currency-restriction regime

    Laser-controlled fluorescence in two-level systems

    Get PDF
    The ability to modify the character of fluorescent emission by a laser-controlled, optically nonlinear process has recently been shown theoretically feasible, and several possible applications have already been identified. In operation, a pulse of off-resonant probe laser beam, of sufficient intensity, is applied to a system exhibiting fluorescence, during the interval of excited- state decay following the initial excitation. The result is a rate of decay that can be controllably modified, the associated changes in fluorescence behavior affording new, chemically specific information. In this paper, a two-level emission model is employed in the further analysis of this all-optical process; the results should prove especially relevant to the analysis and imaging of physical systems employing fluorescent markers, these ranging from quantum dots to green fluorescence protein. Expressions are presented for the laser-controlled fluorescence anisotropy exhibited by samples in which the fluorophores are randomly oriented. It is also shown that, in systems with suitably configured electronic levels and symmetry properties, fluorescence emission can be produced from energy levels that would normally decay nonradiatively. © 2010 American Chemical Society

    Where do children die and what are the causes? Under-5 deaths in the Metro West geographical service area of the Western Cape, South Africa, 2011

    Get PDF
    Background. Accurate child mortality data are essential to plan health interventions to reduce child deaths.Objectives. To review the deaths of children aged <5 years during 2011 in the Metro West geographical service area (GSA) of the Western Cape Province (WC), South Africa, from routine data sources.Methods. A retrospective study of under-5 deaths in the Metro West GSA was done using the WC Local Mortality Surveillance System (LMSS), the Child Healthcare Problem Identification Programme (Child PIP) and the Perinatal Problem Identification Programme (PPIP), and linking where possible.Results. The LMSS reported 700 under-5 deaths, Child PIP 99 and PPIP 252, with an under-5 mortality rate of 18 deaths per 1 000 live births. The leading causes of death were pneumonia (25%), gastroenteritis (10%), prematurity (9%) and injuries (9%). There were 316 in-hospital deaths (45%) and 384 out-of-hospital deaths (55%). Among children aged <1 year, there were significantly more pneumonia deaths out of hospital than in hospital (144 (49%) v. 16 (6%); p<0.001). Among children aged 1 - 4 years there were significantly more injury-related deaths out of hospital than in hospital (43 (47%) v. 4 (9%); p<0.001). In 56 (15%) of the cases of out-of-hospital death the child had visited a public healthcare facility within 1 week of death. Thirty-six (64%) of these children had died of pneumonia or gastroenteritis.Conclusions. Health interventions targeted at reducing under-5 deaths from pneumonia, gastroenteritis, prematurity and injuries need to be implemented across the service delivery platform in the Metro West GSA. It is important to consider all routine data sources in the evaluation of child mortality

    Adsorbate site determination with the scanning tunneling microscope: C<sub>2</sub>H<sub>4</sub> on Cu{110}

    Get PDF
    Scanning tunneling microscopy at T=4 K has been used to determine directly the binding site of a molecule chemisorbed on a metal surface, namely, ethene on Cu〈110〉, by simultaneous imaging of the adsorbate and the underlying lattice. The molecule is found to bond in the short bridge site on the close-packed rows with its C-C axis oriented in the 〈110〉 direction

    Tip‐induced lifting of the Au{100} (hex)‐phase reconstruction in a low temperature ultrahigh vacuum scanning tunneling microscope

    Get PDF
    The clean Au{100} surface is known to be reconstructed, forming a pseudohexagonal (5×27) outermost layer. This structure is observed both in ultrahigh vacuum (UHV) and in the electrochemical environment at potentials corresponding to small negative surface electronic charges. Using a UHV scanning tunneling microscope (STM) at 77 K we have observed that the reconstruction can be lifted at large positive sample biases. The 20% less dense bulk‐terminated surface is produced and the excess material appears as irregularly shaped gold clusters. Over a period of a few minutes, however, the surface relaxes back to the pseudo‐hexagonal phase, a process that can also be followed with the STM

    Quality-of-life measures for use within care homes:A systematic review of their measurement properties

    Get PDF
    Objective: the aims of this review were (i) to identify quality-of-life (QoL) measures which have had their measurement properties validated in people residing in care homes or nursing homes, and to critically compare and summarise these instruments and (ii) to make recommendations for measurement instruments. Methods: bibliographic databases PsycINFO, PubMed, Cochrane, CINAHL and Embase were searched for articles evaluating measurement properties of QoL instruments in people residing in care homes. Methodological quality of studies was assessed using the consensus-based standards for the selection of health measurement instruments checklist. Measurement properties of instruments were appraised using a systematic checklist. Results: the search strategy resulted in 3252 unique citations, of which 15 articles were included in this review. These articles assessed 13 instruments, 8 of which were dementia or Alzheimer specific instruments. The QUALIDEM, a dementia-specific observational instrument, had the widest array of information available on its measurement properties, which were mostly satisfactory. Most measurement instruments lacked information on hypotheses testing and content validity. Information on responsiveness and measurement error was not available for any instrument. Conclusions: for people with dementia living in care homes, the QUALIDEM is recommended for measuring QoL. For residents without dementia, we recommend Kane et al.'s Psychosocial Quality of Life Domains questionnaire. Studies of higher methodological quality, assessing a wider range of measurement properties are needed to allow a more fully informed choice of QoL instrument

    Evidence of Impulsive Heating in Active Region Core Loops

    Full text link
    Using a full spectral scan of an active region from the Extreme-Ultraviolet Imaging Spectrometer (EIS) we have obtained Emission Measure EM(T)(T) distributions in two different moss regions within the same active region. We have compared these with theoretical transition region EMs derived for three limiting cases, namely \textit{static equilibrium}, \textit{strong condensation} and \textit{strong evaporation} from \cite{ebtel}. The EM distributions in both the moss regions are strikingly similar and show a monotonically increasing trend from log⁡T[K]=5.15−6.3\log T[\mathrm{K}]=5.15 -6.3. Using photospheric abundances we obtain a consistent EM distribution for all ions. Comparing the observed and theoretical EM distributions, we find that the observed EM distribution is best explained by the \textit{strong condensation} case (EMcon_{con}), suggesting that a downward enthalpy flux plays an important and possibly dominant role in powering the transition region moss emission. The downflows could be due to unresolved coronal plasma that is cooling and draining after having been impulsively heated. This supports the idea that the hot loops (with temperatures of 3{-}5 MK) seen in the core of active regions are heated by nanoflares.Comment: 17 pages, 4 figures, Accepted for publication in The Astrophysical Journa
    • 

    corecore