2,946 research outputs found
k-Step Relative Inductive Generalization
We introduce a new form of SAT-based symbolic model checking. One common idea
in SAT-based symbolic model checking is to generate new clauses from states
that can lead to property violations. Our previous work suggests applying
induction to generalize from such states. While effective on some benchmarks,
the main problem with inductive generalization is that not all such states can
be inductively generalized at a given time in the analysis, resulting in long
searches for generalizable states on some benchmarks. This paper introduces the
idea of inductively generalizing states relative to -step
over-approximations: a given state is inductively generalized relative to the
latest -step over-approximation relative to which the negation of the state
is itself inductive. This idea motivates an algorithm that inductively
generalizes a given state at the highest level so far examined, possibly by
generating more than one mutually -step relative inductive clause. We
present experimental evidence that the algorithm is effective in practice.Comment: 14 page
Calibration of Low-Frequency, Wide-Field Radio Interferometers Using Delay/Delay-Rate Filtering
We present a filtering technique that can be applied to individual baselines
of wide-bandwidth, wide-field interferometric data to geometrically select
regions on the celestial sphere that contain primary calibration sources. The
technique relies on the Fourier transformation of wide-band frequency spectra
from a given baseline to obtain one-dimensional "delay images", and then the
transformation of a time-series of delay images to obtain two-dimensional
"delay/delay-rate images." Source selection is possible in these images given
appropriate combinations of baseline, bandwidth, integration time and source
location. Strong and persistent radio frequency interference (RFI) limits the
effectiveness of this source selection owing to the removal of data by RFI
excision algorithms. A one-dimensional, complex CLEAN algorithm has been
developed to compensate for RFI-excision effects. This approach allows CLEANed,
source-isolated data to be used to isolate bandpass and primary beam gain
functions. These techniques are applied to data from the Precision Array for
Probing the Epoch of Reionization (PAPER) as a demonstration of their value in
calibrating a new generation of low-frequency radio interferometers with wide
relative bandwidths and large fields-of-view.Comment: 17 pages, 6 figures, 2009AJ....138..219
Emulating Simulations of Cosmic Dawn for 21cm Power Spectrum Constraints on Cosmology, Reionization, and X-ray Heating
Current and upcoming radio interferometric experiments are aiming to make a
statistical characterization of the high-redshift 21cm fluctuation signal
spanning the hydrogen reionization and X-ray heating epochs of the universe.
However, connecting 21cm statistics to underlying physical parameters is
complicated by the theoretical challenge of modeling the relevant physics at
computational speeds quick enough to enable exploration of the high dimensional
and weakly constrained parameter space. In this work, we use machine learning
algorithms to build a fast emulator that mimics expensive simulations of the
21cm signal across a wide parameter space to high precision. We embed our
emulator within a Markov-Chain Monte Carlo framework, enabling it to explore
the posterior distribution over a large number of model parameters, including
those that govern the Epoch of Reionization, the Epoch of X-ray Heating, and
cosmology. As a worked example, we use our emulator to present an updated
parameter constraint forecast for the Hydrogen Epoch of Reionization Array
experiment, showing that its characterization of a fiducial 21cm power spectrum
will considerably narrow the allowed parameter space of reionization and
heating parameters, and could help strengthen Planck's constraints on
. We provide both our generalized emulator code and its
implementation specifically for 21cm parameter constraints as publicly
available software.Comment: 22 pages, 9 figures; accepted to Ap
Remodelling of the natural product fumagillol employing a reaction discovery approach
In the search for new biologically active molecules, diversity-oriented synthetic strategies break through the limitation of traditional library synthesis by sampling new chemical space. Many natural products can be regarded as intriguing starting points for diversity-oriented synthesis, wherein stereochemically rich core structures may be reorganized into chemotypes that are distinctly different from the parent structure. Ideally, to be suited to library applications, such transformations should be general and involve few steps. With this objective in mind, the highly oxygenated natural product fumagillol has been successfully remodelled in several ways using a reaction-discovery-based approach. In reactions with amines, excellent regiocontrol in a bis-epoxide opening/cyclization sequence can be obtained by size-dependent interaction of an appropriate catalyst with the parent molecule, forming either perhydroisoindole or perhydroisoquinoline products. Perhydroisoindoles can be further remodelled by cascade processes to afford either morpholinone or bridged 4,1-benzoxazepine-containing structures.P50 GM067041 - NIGMS NIH HHS; P50 GM067041-07 - NIGMS NIH HHS; P50 GM067041-08 - NIGMS NIH HHS; P50 GM067041-09 - NIGMS NIH HH
Impact of Asian Aerosols on Precipitation Over California: An Observational and Model Based Approach
Dust and pollution emissions from Asia are often transported across the Pacific Ocean to over the western United States. Therefore, it is essential to fully understand the impact of these aerosols on clouds and precipitation forming over the eastern Pacific and western United States, especially during atmospheric river events that account for up to half of California's annual precipitation and can lead to widespread flooding. In order for numerical modeling simulations to accurately represent the present and future regional climate of the western United States, we must account for the aerosol-cloud-precipitation interactions associated with Asian dust and pollution aerosols. Therefore, we have constructed a detailed study utilizing multi-sensor satellite observations, NOAA-led field campaign measurements, and targeted numerical modeling studies where Asian aerosols interacted with cloud and precipitation processes over the western United States. In particular, we utilize aerosol optical depth retrievals from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), NOAA Geostationary Operational Environmental Satellite (GOES-11), and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT) to effectively detect and monitor the trans-Pacific transport of Asian dust and pollution. The aerosol optical depth (AOD) retrievals are used in assimilating the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) in order to provide the model with an accurate representation of the aerosol spatial distribution across the Pacific. We conduct WRF-Chem model simulations of several cold-season atmospheric river events that interacted with Asian aerosols and brought significant precipitation over California during February-March 2011 when the NOAA CalWater field campaign was ongoing. The CalWater field campaign consisted of aircraft and surface measurements of aerosol and precipitation processes that help extensively validate our WRF-Chem model simulations. After validating the capability of the WRF-Chem in realistically simulating the aerosol-cloud precipitation interactions, we conduct sensitivity studies where the AOD is doubled to diagnose whether an increasing concentration of Asian aerosols over the western United States will lead to further impacts on the cloud and precipitation processes over California. We also perform sensitivity studies where the aerosols will be partitioned into dust-only and pollution-only in order to separate the impacts of the differing Asian aerosol species. The results of our WRF-Chem model simulations aim to show that the trans-Pacific transport of Asian aerosols influence the precipitation associated with atmospheric river events that can ultimately impact the regional climate of the western United States. 1 Universit
Amyloid precursor protein cleavage-dependent and -independent axonal degeneration programs share a common nicotinamide mononucleotide adenylyltransferase 1-sensitive pathway
Axonal degeneration is a hallmark of many debilitating neurological disorders and is thought to be regulated by mechanisms distinct from those governing cell body death. Recently, caspase 6 activation via APP cleavage and activation of DR6 was discovered to induce axon degeneration after NGF withdrawal. We tested whether this pathway is involved in axonal degeneration caused by withdrawal of other trophic support, axotomy or vincristine exposure. Neurturin deprivation, like NGF withdrawal activated this APP/DR6/caspase 6 pathway and resulted in axonal degeneration, however, APP cleavage and caspase 6 activation were not involved in axonal degeneration induced by mechanical or toxic insults. However, loss of surface APP (sAPP) and caspase 6 activation were observed during axonal degeneration induced by dynactin 1(Dctn1) dysfunction, which disrupts axonal transport. Mutations in Dctn1 are associated with motor neuron disease and frontal temporal dementia, thus suggesting that the APP/caspase 6 pathway could be important in specific types of disease-associated axonal degeneration. The NGF deprivation paradigm, with its defined molecular pathway, was used to examine the context of Nmnat-mediated axonal protection. We found that although Nmnat blocks axonal degeneration after trophic factor withdrawal, it did not prevent loss of axon sAPP or caspase 6 activation within the axon, suggesting it acts downstream of caspase 6. These results indicate that diverse insults induce axonal degeneration via multiple pathways and that these degeneration signals converge on a common, Nmnat-sensitive program that is uniquely involved in axonal, but not cell body, degeneration
A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization
A new generation of radio telescopes is achieving unprecedented levels of
sensitivity and resolution, as well as increased agility and field-of-view, by
employing high-performance digital signal processing hardware to phase and
correlate large numbers of antennas. The computational demands of these imaging
systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the
number of independent beams, and N is the number of antennas. The
specifications of many new arrays lead to demands in excess of tens of PetaOps
per second.
To meet this challenge, we have developed a general purpose correlator
architecture using standard 10-Gbit Ethernet switches to pass data between
flexible hardware modules containing Field Programmable Gate Array (FPGA)
chips. These chips are programmed using open-source signal processing libraries
we have developed to be flexible, scalable, and chip-independent. This work
reduces the time and cost of implementing a wide range of signal processing
systems, with correlators foremost among them,and facilitates upgrading to new
generations of processing technology. We present several correlator
deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes
parameter application deployed on the Precision Array for Probing the Epoch of
Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31
pages. v2: corrected typo, v3: corrected Fig. 1
Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy
AbstractLower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p=0.01) but were unchanged in controls (p=0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p<0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p=0.007 and p=0.001, respectively). Longitudinal increases in WMH (rs=0.04, p=0.86) or cerebral microbleeds (rs=−0.18, p=0.45) were not associated with the longitudinal decrease in BOLD amplitudes
- …