14 research outputs found

    Gene Expression Analysis in Rats Treated with Experimental Acetyl-Coenzyme A Carboxylase Inhibitors Suggests Interactions with the Peroxisome Proliferator-Activated Receptor ␣ Pathway

    Get PDF
    ABSTRACT Acetyl CoA carboxylase (ACC) 2, which catalyzes the carboxylation of acetyl-CoA to form malonyl-CoA, has been identified as a potential target for type 2 diabetes and obesity. Small-molecule inhibitors of ACC2 would be expected to reduce de novo lipid synthesis and increase lipid oxidation. Treatment of ob/ob mice with compound A-908292 (S) ({(S)-3-[2-(4-isopropoxy-phenoxy)-thiazol-5-yl]-1-methylprop-2-ynyl}-carbamic acid methyl ester), a small-molecule inhibitor with an IC 50 of 23 nM against ACC2, resulted in a reduction of serum glucose and triglyceride levels. However, compound A-875400 (R) ({(R)-3-[2-(4-isopropoxy-phenoxy)-thiazol-5-yl]-1-methyl-prop-2-ynyl}-carbamic acid methyl ester), an inactive enantiomer of A-908292 (S) with approximately 50-fold less activity against ACC2, also caused a similar reduction in glucose and triglycerides, suggesting that the glucose-lowering effects in ob/ob mice may be mediated by other metabolic pathways independent of ACC2 inhibition. To characterize the pharmacological activity of these experimental compounds at a transcriptional level, rats were orally dosed for 3 days with either A-908292 (S) or A-875400 (R), and gene expression analysis was performed. Gene expression analysis of livers showed that treatment with A-908292 (S) or A-875400 (R) resulted in gene expression profiles highly similar to known peroxisome proliferator-activated receptor (PPAR)-␣ activators. The results suggest that, in vivo, both A-908292 (S) and A-875400 (R) stimulated the PPAR-␣-dependent signaling pathway. These results were further supported by both an in vitro genomic evaluation using rat hepatocytes and immunohistochemical evaluation using 70-kDa peroxisomal membrane protein. Overall, the gene expression analysis suggests a plausible mechanism for the similar pharmacological findings with active and inactive enantiomers of an ACC2 inhibitor

    Genetic Control of Obesity and Gut Microbiota Composition in Response to High-Fat, High-Sucrose Diet in Mice

    Get PDF
    Obesity is a highly heritable disease driven by complex interactions between genetic and environmental factors. Human genome-wide association studies (GWAS) have identified a number of loci contributing to obesity; however, a major limitation of these studies is the inability to assess environmental interactions common to obesity. Using a systems genetics approach, we measured obesity traits, global gene expression, and gut microbiota composition in response to a high-fat/high-sucrose (HF/HS) diet of more than 100 inbred strains of mice. Here we show that HF/HS feeding promotes robust, strain-specific changes in obesity that is not accounted for by food intake and provide evidence for a genetically determined set-point for obesity. GWAS analysis identified 11 genome-wide significant loci associated with obesity traits, several of which overlap with loci identified in human studies. We also show strong relationships between genotype and gut microbiota plasticity during HF/HS feeding and identify gut microbial phylotypes associated with obesity

    PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    No full text
    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA(1C). Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes

    Community based yoga classes for type 2 diabetes: an exploratory randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yoga is a popular therapy for diabetes but its efficacy is contested. The aim of this study was to explore the feasibility of researching community based yoga classes in Type 2 diabetes with a view to informing the design of a definitive, multi-centre trial</p> <p>Methods</p> <p>The study design was an exploratory randomised controlled trial with in-depth process evaluation. The setting was two multi-ethnic boroughs in London, UK; one with average and one with low mean socio-economic deprivation score. Classes were held at a sports centre or GP surgery. Participants were 59 people with Type 2 diabetes not taking insulin, recruited from general practice lists or opportunistically by general practice staff. The intervention group were offered 12 weeks of a twice-weekly 90-minute yoga class; the control group was a waiting list for the yoga classes. Both groups received advice and leaflets on healthy lifestyle and were encouraged to exercise.</p> <p>Primary outcome measure was HbA1c. Secondary outcome measures included attendance, weight, waist circumference, lipid levels, blood pressure, UKPDS cardiovascular risk score, diabetes-related quality of life (ADDQoL), and self-efficacy. Process measures were attendance at yoga sessions, self-reported frequency of practice between taught sessions, and qualitative data (interviews with patients and therapists, ethnographic observation of the yoga classes, and analysis of documents including minutes of meetings, correspondence, and exercise plans).</p> <p>Results</p> <p>Despite broad inclusion criteria, around two-thirds of the patients on GP diabetic registers proved ineligible, and 90% of the remainder declined to participate. Mean age of participants was 60 +/- 10 years. Attendance at yoga classes was around 50%. Nobody did the exercises regularly at home. Yoga teachers felt that most participants were unsuitable for 'standard' yoga exercises because of limited flexibility, lack of basic fitness, co-morbidity, and lack of confidence. There was a small fall in HbA1c in the yoga group which was not statistically significant and which was not sustained six months later, and no significant change in other outcome measures.</p> <p>Conclusion</p> <p>The benefits of yoga in type 2 diabetes suggested in some previous studies were not confirmed. Possible explanations (apart from lack of efficacy) include recruitment challenges; practical and motivational barriers to class attendance; physical and motivational barriers to engaging in the exercises; inadequate intensity and/or duration of yoga intervention; and insufficient personalisation of exercises to individual needs. All these factors should be considered when designing future trials.</p> <p>Trial registration</p> <p>National Research Register (1410) and Current Controlled Trials (ISRCTN63637211).</p
    corecore