270 research outputs found
Dispersion monitoring for high-speed WDM networks via two-photon absorption in a semiconductor microcavity
Due to the continued demand for bandwidth, network operators have to increase the data rates at which individual wavelengths operate at. As these data rates will exceed 100 Gbit/s in the next 5-10 years, it will be crucial to be able to monitor and compensate for the amount of chromatic dispersion encountered by individual wavelength channels. This paper will focus on the use of the novel nonlinear optical-to-electrical conversion process of two-photon absorption (TPA) for dispersion monitoring. By incorporating a specially designed semiconductor microcavity, the TPA response becomes wavelength dependent, thus allowing simultaneous channel selection and monitoring without the need for external wavelength filterin
Free expansion of Bose-Einstein condensates with quantized vortices
The expansion of Bose-Einstein condensates with quantized vortices is studied
by solving numerically the time-dependent Gross-Pitaevskii equation at zero
temperature. For a condensate initially trapped in a spherical harmonic
potential, we confirm previous results obtained by means of variational methods
showing that, after releasing the trap, the vortex core expands faster than the
radius of the atomic cloud. This could make the detection of vortices feasible,
by observing the depletion of the density along the axis of rotation. We find
that this effect is significantly enhanced in the case of anisotropic
disc-shaped traps. The results obtained as a function of the anisotropy of the
initial configuration are compared with the analytic solution for a
noninteracting gas in 3D as well as with the scaling law predicted for an
interacting gas in 2D.Comment: 5 pages, 6 postscript figure
Effect of Hyperglycemia on Gene Expression during Early Organogenesis in Mice
BACKGROUND: Cardiovascular and neural malformations are common sequels of diabetic pregnancies, but the underlying molecular mechanisms remain unknown. We hypothesized that maternal hyperglycemia would affect the embryos most shortly after the glucose-sensitive time window at embryonic day (ED) 7.5 in mice. METHODS: Mice were made diabetic with streptozotocin, treated with slow-release insulin implants and mated. Pregnancy aggravated hyperglycemia. Gene expression profiles were determined in ED8.5 and ED9.5 embryos from diabetic and control mice using Serial Analysis of Gene Expression and deep sequencing. RESULTS: Maternal hyperglycemia induced differential regulation of 1,024 and 2,148 unique functional genes on ED8.5 and ED9.5, respectively, mostly in downward direction. Pathway analysis showed that ED8.5 embryos suffered mainly from impaired cell proliferation, and ED9.5 embryos from impaired cytoskeletal remodeling and oxidative phosphorylation (all P †E-5). A query of the Mouse Genome Database showed that 20-25% of the differentially expressed genes were caused by cardiovascular and/or neural malformations, if deficient. Despite high glucose levels in embryos with maternal hyperglycemia and a ~150-fold higher rate of ATP production from glycolysis than from oxidative phosphorylation on ED9.5, ATP production from both glycolysis and oxidative phosphorylation was reduced to ~70% of controls, implying a shortage of energy production in hyperglycemic embryos. CONCLUSION: Maternal hyperglycemia suppressed cell proliferation during gastrulation and cytoskeletal remodeling during early organogenesis. 20-25% of the genes that were differentially regulated by hyperglycemia were associated with relevant congenital malformations. Unexpectedly, maternal hyperglycemia also endangered the energy supply of the embryo by suppressing its glycolytic capacity
Persistent currents in a circular array of Bose-Einstein condensates
A ring-shaped array of Bose-Einstein condensed atomic gases can display
circular currents if the relative phase of neighboring condensates becomes
locked to certain values. It is shown that, irrespective of the mechanism
responsible for generating these states, only a restricted set of currents are
stable, depending on the number of condensates, on the interaction and
tunneling energies, and on the total number of particles. Different
instabilities due to quasiparticle excitations are characterized and possible
experimental setups for testing the stability prediction are also discussed.Comment: 7 pages, REVTex
Choline Diet and Its Gut MicrobeâDerived Metabolite, Trimethylamine N-Oxide, Exacerbate Pressure OverloadâInduced Heart Failure
BackgroundâTrimethylamine N-oxide (TMAO), a gut microbeâdependent metabolite of dietary choline and other trimethylamine-containing nutrients, is both elevated in the circulation of patients having heart failure and heralds worse overall prognosis. In animal studies, dietary choline or TMAO significantly accelerates atherosclerotic lesion development in ApoE-deficient mice, and reduction in TMAO levels inhibits atherosclerosis development in the low-density lipoprotein receptor knockout mouse. Methods and ResultsâC57BL6/J mice were fed either a control diet, a diet containing choline (1.2%) or a diet containing TMAO (0.12%) starting 3 weeks before surgical transverse aortic constriction. Mice were studied for 12 weeks after transverse aortic constriction. Cardiac function and left ventricular structure were monitored at 3-week intervals using echocardiography. Twelve weeks post transverse aortic constriction, myocardial tissues were collected to evaluate cardiac and vascular fibrosis, and blood samples were evaluated for cardiac brain natriuretic peptide, choline, and TMAO levels. Pulmonary edema, cardiac enlargement, and left ventricular ejection fraction were significantly (P\u3c0.05, each) worse in mice fed either TMAO- or choline-supplemented diets when compared with the control diet. In addition, myocardial fibrosis was also significantly greater (P\u3c0.01, each) in the TMAO and choline groups relative to controls. ConclusionsâHeart failure severity is significantly enhanced in mice fed diets supplemented with either choline or the gut microbeâdependent metabolite TMAO. The present results suggest that additional studies are warranted examining whether gut microbiota and the dietary cholineâTMAO pathway contribute to increased heart failure susceptibility
The dynamics of vortex generation in superfluid 3He-B
A profound change occurs in the stability of quantized vortices in externally
applied flow of superfluid 3He-B at temperatures ~ 0.6 Tc, owing to the rapidly
decreasing damping in vortex motion with decreasing temperature. At low damping
an evolving vortex may become unstable and generate a new independent vortex
loop. This single-vortex instability is the generic precursor to turbulence. We
investigate the instability with non-invasive NMR measurements on a rotating
cylindrical sample in the intermediate temperature regime (0.3 - 0.6) Tc. From
comparisons with numerical calculations we interpret that the instability
occurs at the container wall, when the vortex end moves along the wall in
applied flow.Comment: revised & extended version. Journal of Low Temperature Physics,
accepted (2008
Ab initio Quantum and ab initio Molecular Dynamics of the Dissociative Adsorption of Hydrogen on Pd(100)
The dissociative adsorption of hydrogen on Pd(100) has been studied by ab
initio quantum dynamics and ab initio molecular dynamics calculations. Treating
all hydrogen degrees of freedom as dynamical coordinates implies a high
dimensionality and requires statistical averages over thousands of
trajectories. An efficient and accurate treatment of such extensive statistics
is achieved in two steps: In a first step we evaluate the ab initio potential
energy surface (PES) and determine an analytical representation. Then, in an
independent second step dynamical calculations are performed on the analytical
representation of the PES. Thus the dissociation dynamics is investigated
without any crucial assumption except for the Born-Oppenheimer approximation
which is anyhow employed when density-functional theory calculations are
performed. The ab initio molecular dynamics is compared to detailed quantum
dynamical calculations on exactly the same ab initio PES. The occurence of
quantum oscillations in the sticking probability as a function of kinetic
energy is addressed. They turn out to be very sensitive to the symmetry of the
initial conditions. At low kinetic energies sticking is dominated by the
steering effect which is illustrated using classical trajectories. The steering
effects depends on the kinetic energy, but not on the mass of the molecules.
Zero-point effects lead to strong differences between quantum and classical
calculations of the sticking probability. The dependence of the sticking
probability on the angle of incidence is analysed; it is found to be in good
agreement with experimental data. The results show that the determination of
the potential energy surface combined with high-dimensional dynamical
calculations, in which all relevant degrees of freedon are taken into account,
leads to a detailed understanding of the dissociation dynamics of hydrogen at a
transition metal surface.Comment: 15 pages, 9 figures, subm. to Phys. Rev.
Cosmology, Particle Physics and Superfluid 3He
Many direct parallels connect superfluid 3He with the field theories
describing the physical vacuum, gauge fields and elementary fermions.
Superfluid He exhibits a variety of topological defects which can be
detected with single-defect sensitivity. Modern scenarios of defect-mediated
baryogenesis can be simulated by the interaction of the 3He vortices and domain
walls with fermionic quasiparticles. Formation of defects in a
symmetry-breaking phase transition in the early Universe, which could be
responsible for large-scale structure formation and for microwave-background
anisotropy, also may be modelled in the laboratory. This is supported by the
recent observation of vortex formation in neutron-irradiated 3He-B where the
"primordial fireball" is formed in an exothermic nuclear reaction.Comment: Invited talk at LT-21 Conference, 20 pages, 3 figures available at
request, compressed ps file of the camera-ready format with 3 figures is at
ftp://boojum.hut.fi/pub/publications/lowtemp/LTL-96006.ps.g
A complete 3D numerical study of the effects of pseudoscalar-photon mixing on quasar polarizations
We present the results of three-dimensional simulations of quasar
polarizations in the presence of pseudoscalar-photon mixing in the
intergalactic medium. The intergalactic magnetic field is assumed to be
uncorrelated in wave vector space but correlated in real space. Such a field
may be obtained if its origin is primordial. Furthermore we assume that the
quasars, located at cosmological distances, have negligible initial
polarization. In the presence of pseudoscalar-photon mixing we show, through a
direct comparison with observations, that this may explain the observed large
scale alignments in quasar polarizations within the framework of big bang
cosmology. We find that the simulation results give a reasonably good fit to
the observed data.Comment: 15 pages, 8 figures, significant changes, to appear in EPJ
- âŠ