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Abstract

Background

Cardiovascular and neural malformations are common sequels of diabetic pregnancies, but
the underlying molecular mechanisms remain unknown. We hypothesized that maternal
hyperglycemia would affect the embryos most shortly after the glucose-sensitive time win-
dow at embryonic day (ED) 7.5 in mice.

Methods

Mice were made diabetic with streptozotocin, treated with slow-release insulin implants and
mated. Pregnancy aggravated hyperglycemia. Gene expression profiles were determined
in ED8.5 and ED9.5 embryos from diabetic and control mice using Serial Analysis of Gene
Expression and deep sequencing.

Results

Maternal hyperglycemia induced differential regulation of 1,024 and 2,148 unique functional
genes on ED8.5 and ED9.5, respectively, mostly in downward direction. Pathway analysis
showed that ED8.5 embryos suffered mainly from impaired cell proliferation, and ED9.5
embryos from impaired cytoskeletal remodeling and oxidative phosphorylation (all P < E-5).
A query of the Mouse Genome Database showed that 20—25% of the differentially expressed
genes were caused by cardiovascular and/or neural malformations, if deficient. Despite high
glucose levels in embryos with maternal hyperglycemia and a ~150-fold higher rate of ATP
production from glycolysis than from oxidative phosphorylation on ED9.5, ATP production
from both glycolysis and oxidative phosphorylation was reduced to ~70% of controls, imply-
ing a shortage of energy production in hyperglycemic embryos.
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Conclusion

Maternal hyperglycemia suppressed cell proliferation during gastrulation and cytoskeletal
remodeling during early organogenesis. 20-25% of the genes that were differentially regu-
lated by hyperglycemia were associated with relevant congenital malformations. Unexpect-
edly, maternal hyperglycemia also endangered the energy supply of the embryo by
suppressing its glycolytic capacity.

Introduction

Maternal diabetes is a well-established risk factor for congenital malformations in humans [1].
Among these, neural-tube and heart defects, kidney dysgenesis and the caudal regression syn-
drome are often reported [2—6]. The highest relative risk for major neural tube and cardiovas-
cular defects occurs if the mother develops insulin resistance in the 1* trimester [7,8]. Similar
phenomena have been reproduced in rodent models of diabetic pregnancy [9,10]. The animal
studies showed that altered expression of genes that regulate the migration of neural crest cells
and neural plate closure resulted in patterning defects of the developing head, neural tube and
heart [11,12]. In vitro studies further showed that a high glucose concentration impaired the
proliferation and cell-fate specification of neural stem cells [13].

In mice, ED7.5 appears to be the most sensitive time window for inducing congenital mal-
formations of the neural tube: hyperglycemia at solely this time point suffices to induce these
malformations [14,15]. Probably because congenital malformations associated with diabetic
embryopathy manifest themselves only on ED10.5, inventories of hyperglycemia-induced
changes in gene expression in the embryo were established on ED10.5 [16,17], ED11.5 [18],
and between ED13.5 and ED15.5 [19]. These studies showed that maternal hyperglycemia
affected the expression of genes involved in apoptosis, proliferation, migration and differentia-
tion during organogenesis in the offspring. It is, however, conceivable that these inventories
describe the sequels rather than the targets of the hyperglycemia-induced disturbance in
metabolism, because neural-tube formation and neural-crest migration to the heart are initi-
ated during the 8" embryonic day, that is, much earlier [20,21]. We, therefore, analyzed gene
expression profiles in embryos of diabetic and nondiabetic pregnancies on ED8.5 and 9.5, that
is, shortly after the embryos became sensitive to the hyperglycemia.

Our mouse model of diabetic pregnancy is based on that developed by Loeken [11]. In this
elegant model, a moderate dose of streptozotocin (STZ) is used to induce diabetes. After 4-6
weeks of treatment, female mice were exposed to male mice. Because STZ has a very short half-
life at neutral pH [22] and because oocytes do not replicate their DNA before fertilization, STZ
itself probably has no mutagenic effects on the offspring. Moreover, the effects of STZ can be
largely annulled if the STZ-treated mice are also treated with the immunosuppressive drug
mycophenolate mofetil [23], suggesting that STZ induces an autoimmune response rather than
cytotoxicity. Since the females are not yet severely hyperglycemic at conception, the protocol
also avoids the adverse effects of severe maternal diabetes on the growth and maturation of pre-
ovulatory oocytes and preimplantation embryos [24]. In fact, severe hyperglycemia develops
only after implantation of the embryos at ED4.5, which mimics pregnancy-induced diabetes in
humans.

We made an inventory hyperglycemia-induced changes in gene expression in the embryo
by creating a Serial Analysis of Gene Expression (SAGE) library and quantifying the mRNA
distribution with SOLiD SAGE sequencing [25,26]. Bioinformatic analyses were then used to
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identify differentially expressed genes to delineate highly regulated pathways and cell-biological
processes that were associated with diabetic embryopathy and, finally, to test whether the iden-
tified genes and pathways were, if deficient, responsible for neural tube or cardiovascular mal-
formations. We found that that the expression of genes involved in the regulation of cell
proliferation, cytoskeletal remodeling, and energy metabolism were most severely affected in
ED8.5 and 9.5 embryos. Among the affected genes, many were previously shown to be respon-
sible for neural tube or heart develop, and often for both.

Materials and Methods
Animals

FVB mice (9-11 weeks old) were obtained from Harlan Sprague Dawley (Venray, The Nether-
lands) and fed a diet that was based on Purina 9F (http://www.labdiet.com/cs/groups/lolweb/@
labdiet/documents/web_content/mdrf/mdi4/~edisp/ducm04_028438.pdf; production:
ABDiets, Woerden, The Netherlands). Mice were kept in groups of 4-5 mice in open cages at
the animal facility, on a 12-h light/12-h dark cycle at 22°C with free access to water and food.
The study was carried out in accordance with the Dutch Guidelines for the Care and Use of
Laboratory Animals and approved by the Ethical Committee for Animal Research of the Uni-
versity of Amsterdam (ALC101225).

Induction of diabetes

The pregnant diabetic mouse model was adopted from Loeken c.s. [11]. This model has been
extensively evaluated with respect to the malformations it induces in the central-nervous
(CNS) and cardiovascular systems of the offspring. Diabetes was induced as recommended by
the Animal Models of Diabetic Complications Consortium (AMDCC; [27]). Animals to be
treated with streptozotocin were randomly chosen. The diabetic group included 33 and the
control group 16 mice. 4-5 diabetic and control mice were housed in one cage. Prior to treat-
ment, female mice were fasted for 6 hours. Sixty mg/kg streptozotocin (STZ; Sigma, Zwijn-
drecht, The Netherlands), freshly dissolved in 0.1 M sodium citrate (pH 4.5), was injected
intraperitoneally for 5 successive days. Mice were screened for glucosuria with KETO-DIA-
BUR-TEST 5000 test strips (Roche, Almere, The Netherlands) from 6 days after the first injec-
tion of STZ onwards. Body weight was checked twice weekly. Blood glucose levels were
measured before the first injection of STZ and 3 weeks thereafter with a Glucometer Elite
(Bayer, Mijdrecht, The Netherlands). Hyperglycemia was treated with subcutaneous sustained-
release insulin implants (“linbits”; LinSHIN, Toronto, Canada) that release ~0.1 U/day-
*implant for at least 30 days. Depending on whether the concentration of blood glucose was
20-25, 25-30, or >30 mmol/L, 1, 1.5, or 2 linbits were implanted. Thereafter, blood glucose
was measured weekly. STZ-treated female mice lost ~10% of their body weight in the first 3
weeks after treatment, but regained it upon treatment with the insulin implants (S1 Fig). STZ-
treated mice without insulin supplementation were not included in the study. Two-to-three
weeks after linbit implantation, mice that maintained glucose levels within the 10-15 mmol/L
range were mated with nondiabetic male FVB mice. Noon of the day on which a copulation
plug was found was set as embryonic day (ED) 0.5. Only pregnant females with blood glucose
levels >17 mmol/L at ED7.5 were included in the experiment (~15 mmol/L is a critical value to
induce hyperglycemic damage in embryos [15,28,29]). Pregnant mice were anesthetized with
CO, and then sacrificed by cervical dislocation and embryos were recovered between ED7.5
and ED11.5. The developmental stage of the embryos was checked with the criteria of Kaufman
[30] (see S1 Table). Only embryos at the proper developmental stage were included in the
study.
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Quantification of MRNAs by SOLID SAGE sequencing

Since we did not have an estimate of the variance in gene expression in our experimental ani-
mals, we relied on an approximation [31]. Based on a power of 0.8 and a false discovery rate
(FDR) of 0.05, >8 arrays, that is, >8 embryos per time point and treatment should give infor-
mative results [31]. Therefore, 8 male diabetic and 8 male control embryos were randomly cho-
sen from the collection for RNA isolation and SAGE analysis. Total RNA was extracted from
the anterior half of embryos (transverse cut made just caudal to the heart) on ED8.5 and from
the thoracic segment on ED9.5 (transverse cut made anteriorly between head and thorax, and
posteriorly just caudal to the heart), using the TriPure Isolation Reagent (Roche, Almere, The
Netherlands). Embryos were frozen and thawed 3 times using liquid nitrogen. After centrifuga-
tion, the organic phase of the TriPure extract was re-extracted 3 times. The combined aqueous
phases were extracted with choloroform:isoamyl alcohol (24:1) and precipitated with ethanol
after addition of 10 ug glycogen. The quantity of total RNA was determined with Qubit 1.0 Fluo-
rometer (Invitrogen, The Netherlands), while the quality was assessed with the Bioanalyser
RNA 6000 Nano Chip (Agilent Technologies, Amstelveen, The Netherlands). The RNA integ-
rity number (RIN) of the samples was 9.0-10.0. The total RNA yield per embryo was 0.8+0.1 pg
on ED8.5 and 1.8+0.3 ug on ED9.5.

The relative abundance of individual mRNAs was determined by the SOLiD SAGE
approach. A double-stranded cDNA library was prepared from at least 0.5 pg RNA, using the
SOLID SAGE Sequencing kit with the Barcoding Adaptor Module (Applied Biosystems, Bleis-
wijk, The Netherlands; catalog #4452811) and the “working with small amounts of total RNA
(1-2 ug)” protocol [26]. Polyadenylated mRNAs were captured with oligo(dT) Dynabeads
(Invitrogen; supplied in the kit) and converted to cDNA while attached to the beads. After sec-
ond-strand synthesis, the cDNA was cleaved with NlalIl. An adapter containing an EcoP15I-
recognition site was ligated to the 5’end of the fragment still attached to the bead. EcoP15I
cleaves DNA 25-27 bp downstream and releases a tag with a 2-bp overhang. After ligating
another adaptor to this overhang, the tag was amplified as described (http://tools.
lifetechnologies.com/content/sfs/manuals/cms_084611.pdf). This protocol generates only 1
read per mRNA molecule.

The amplified cDNA libraries, each with a specific barcode introduced during PCR amplifica-
tion, were pooled in equal ratios. Size and concentration of the libraries were determined using
the Bioanalyser DNA-1000 or high-sensitivity chip (Agilent Technologies, Amstelveen, The
Netherlands). After affinity selection on beads, the pooled libraries were amplified by emulsion
PCR to >30,000 copies, followed by further enrichment on beads and purification as described
in SOLiD™ 4 System Templated Bead Preparation Guide. High-throughput sequencing was car-
ried out on a SOLiD™ 5 system (Applied Biosystems, Bleiswijk, The Netherlands). The sequenc-
ing data are available at NCBI (accession number: PRINA275285; SRA study: SRP056150).

To generate pure reads for analysis, adaptors were removed with Pyrodigm trimming [32].
Alignment was done with the “Burrows-Wheeler aligner” (BWA) against the Mus musculus ref-
erence genome “mm10”. More specifically, the BWA-backtrack algorithm, which is designed
for sequence reads up to 100bp, was used [33]. The DESeq2 package (available through Biocon-
ductor [34]) was used to analyze differential gene expression. Normalization for number of
reads per embryo was performed using the “Estimate Size Factors” in the DESeq2 package. P-
values were adjusted for multiple testing using the Benjamini-Hochberg procedure. A
P,q; < 0.05 was considered statistically significant. Clusters were generated with generalized lin-
ear models (GLM) based on expression patterns of top 100 genes ranked by P value. Pathway
analysis with MetaCore™ software (GeneGo, Inc., St. Joseph, MI, USA) was used to assess the
significance of changes in gene expression in specified pathways [35,36]. The significance was
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based on the degree of overlap between the user’s dataset and a set of genes corresponding to a
network or pathway queried, assuming the probability that randomly obtained overlaps of a cer-
tain size between the user’s set and a network or pathway follow a hypergeometric distribution
[37]. MetaCore™ determines the degree of association of uploaded datasets with predefined
pathways and expresses the similarity in P-values, with lower P-values being more relevant.

Quantitative PCR analysis of gene expression

Quantitative PCR was performed using a Lightcycler 2.0 with the Fast Start DNA Master”
SYBR Green I kit (Roche, The Netherlands). Primers were designed by the Primer-BLAST tool
from NCBI and supplied in S2 Table. cDNA synthesis were performed by gene-specific prim-
ing with 40 pmol gene-specific primer and 20 pmol 18S primer. cDNA was diluted 40 times
before assaying mRNA expression and 1,000-fold more for 18S expression. Gene expression
was normalized relative to the expression of Tor3a and 18S. Tor3a was selected as reference
genes with the NormFinder software [38] from the SAGE expression data. The average expres-
sion of Tor3a and 18S was calculated for each of the genes separately and put at 100% before
their relative presence in each of the samples was used for normalization.

Sex identification

DNA from the visceral yolk sacs of ED8.5 embryos, or the posterior part (cut made just caudal to
the heart) of ED9.5 embryos was isolated with TriPure Isolation Reagent (Roche, Almere, The
Netherlands). The tissues were taken from the remaining parts of the embryos after harvesting
the anterior part (ED8.5) and heart-containing segment (ED9.5) for mRNA quantification (next
section). The sex of the embryos was determined by a multiplex PCR amplification using primers
to amplify the male-specific Sry gene and the autosomal 1I3 gene for reference [39].

Rate of oxygen consumption and glycolysis

Real-time rates of cellular oxygen consumption (respiration) and proton excretion (glycolysis)
in control and hyperglycemic ED9.5 embryo cells were determined using the Seahorse Extra-
cellular Flux (XF-96) analyzer (Seahorse Bioscience, Billerica, MA). 5* 10* freshly isolated
embryonic cells were seeded in an XF microplate and cultured for 2 hours in the presence of
11.1 mmol/L D-glucose and 10% fetal bovine serum prior to measurement of the oxygen con-
sumption rate (OCR) and extracellular acidification rates (ECAR). Sequential additions of the
ATP synthase inhibitor oligomycin, the uncoupling ionophore carbonyl cyanide-p-trifluoro-
methoxyphenylhydrazone (FCCP), and the cytochrome-c-reductase inhibitor antimycin A
were as per the manufacturer’s instructions and allowed determination of the basal rate of oxy-
gen consumption (no additions), the rate of oxygen consumption linked to ATP production
(oligomycin addition), the maximal respiration capacity (FCCP addition), and the rate of non-
mitochondrial oxygen consumption (antimycin A). The ECAR was determined under basal
conditions (no additions) and after inhibition of mitochondrial ATP synthesis with oligomy-
cin. The number of cells was estimated as protein content, which was determined for each well
using a standard BCA protein assay. OCR and ECAR values are normalized to mg protein and
expressed as the mean + SEM.

Data analysis

Gene expression is shown as mean + SEM. The tests of glucose level and oxygen consumption
and extracellular acidification measurements were performed by ANOVA or Student’s t-test. A
P < 0.05 was considered statistically significant and < 0.1 as indicating a trend.
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Fig 1. Blood glucose levels in pregnant diabetic mice. Blood glucose levels were measured before streptozotocin
(“preSTZ”) treatment, 3 weeks after the first STZ injection (“STZ”), on the day of mating (“mating”), on ED7.5 of pregnancy
(“ED7.5”), and at sacrifice (‘ED8.5-ED11.5"). After STZ treatment, blood glucose of diabetic mice increased to ~26 mmol/L.
Insulin pellets (“linbit”) were implanted after establishing the diabetic state of the mice. Mating was performed when blood
glucose was ~14 mmol/L. The control group was not treated with STZ or insulin. Differences between blood glucose levels
of diabetic (n = 33) and control mice (n = 16) were analyzed by one-way ANOVA and t test. Filled symbols: non-diabetic
control mice; open symbols: STZ-treated diabetic mice. **: P <0.001 (comparison of blood glucose between STZ and
mating, mating and ED7.5). *: P < 0.03 (ED7.5 vs ED8.5; ED8.5 did not differ from ED9.5-ED11.5).

doi:10.1371/journal.pone.0158035.g001

Results
1. The mouse model of diabetic pregnancy

In this study we investigated the effects of hyperglycemia on embryos in the early somite
period, that is, on ED8.5 and ED9.5 (7-20 somites). The blood glucose levels in the dams from
the induction of diabetes to sacrifice are shown in Fig 1. Blood glucose concentrations of female
mice after induction of diabetes (P < 0.001), during the mating period (P < 0.01), and during
pregnancy (P < 0.001) were significantly higher than those in controls. In diabetic mice, mater-
nal blood glucose concentrations decreased to ~50% after the implantation of sustained-release
insulin implants (“linbits”; P < 0.001), while maternal blood glucose concentrations rose
markedly between mating and ED7.5 (P < 0.001) and between ED7.5 and 8.5 (P < 0.03), after
which it plateaued (Pg 5,505 = 0.72, Py 56105 = 0.38 and Py 5,411.5 = 0.28). Because human clini-
cal studies showed that male offspring was more sensitive to the effect of maternal diabetes
than female [40], male mouse embryos were investigated. All embryos in the study were alive
and none was externally abnormal or delayed in development (S2 Fig).

2. Global profile of gene expression in ED8.5 and 9.5 embryos

To obtain a comprehensive overview of the response of embryos to maternal hyperglycemia at
an early developmental stage, whole transcriptome profiles of ED8.5 and ED9.5 embryos were
investigated with SOLiD SAGE mRNA deep sequencing. To obtain a representative expres-
sion-profile library, construction had to be started with at least 0.5 pg mRNA to assure that the
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Fig 2. Hierarchical clustering of the changes in gene expression in control and hyperglycemic ED8.5 and ED9.5 embryos.
Messenger RNA from control and hyperglycemic ED8.5 (left panel) and ED9.5 embryos (right panel) was extracted (8 embryos per group)
and each used for the construction of a separate SOLID SAGE library. “C” and “D” at the bottom margin of the panels indicate “control” and
“diabetic” (hyperglycemic) embryos, respectively. Hierarchical clustering was performed by DESeq analysis. The dendrogram on the top of
the panels reflects the correlation in differential gene expression between embryos, with less height indicating a higher similarity. The
dendrograms at the left margin indicate the correlation in the response of the respective genes. The intensity of the blue color represents the
relative level of expression of a gene (after transforming the data for variance stabilization). One ED8.5 hyperglycemic embryo was
removed because the input of mMRNA was low (< 0.5 pug) and subsequent output of mMRNA too small (see S1 Fig). Three ED8.5 control
embryos clustered with the hyperglycemic embryos and were not included in the analyses (see main text). At ED8.5, 2305 genes were
differentially expressed (panel A; 7 hyperglycemic and 5 control embryos were compared). On ED9.5, 4640 were differentially expressed
(panel B).

doi:10.1371/journal.pone.0158035.g002

number of detected genes for a library was not dependent on the input of total RNA (S3 Fig).
We obtained ~8*10° pure reads and the expression profile of ~2*10* genes per embryo.

The dendrogram generated by non-supervised hierarchical clustering with correlation as
similarity measure and average linkage as clustering parameter revealed that maternal diabetes
separated control and hyperglycemic groups into distinct branches on ED9.5 (Fig 2B), but not
yet on ED8.5 (Fig 2A). The length of a branch reflects the degree of difference between samples.
Of the 8 control and 8 hyperglycemic ED8.5 embryos that were analyzed, a subgroup of 3 con-
trol embryos clustered with the hyperglycemic embryos (Fig 2A). These differently behaving
control embryos were from 2 litters that also had a member in the main control group. Further-
more, one hyperglycemic embryo behaved quite differently from the remaining embryos,
because the input of mRNA for cDNA synthesis was too small (0.3 pg; no saturation in genes
detected, see S3 Fig). To identify the regulated pathways on ED8.5, we performed pathway
analysis on the 7 hyperglycemic and 5 control embryos that clustered together. Compared to
the control group, 2305 (ED8.5) and 4640 (ED9.5) unique transcripts met our boundary condi-
tion for significance (P,4; < 0.05) and were > 1.5-fold up- or downregulated as a result of
maternal diabetes. The log; fold change distribution of differentially expressed genes (P,qj <
0.05) in the entire population on ED8.5 and 9.5 is shown in Fig 3. The majority of these genes
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Fig 3. The distribution of the fold-change of differentially expressed genes in ED8.5 and 9.5 embryos. Panels
A and B show the fold-change of the 2305 and 4640 differentially expressed genes on ED8.5 and 9.5, respectively,
with fold change >1.5, as detected after DESeq analysis. The X-axis shows bins with log,-fold change, while the Y-
axis indicates the frequency of each event. Note that the majority of genes were downregulated in hyperglycemic
embryos (~80% on ED8.5 and ~65% on ED9.5).

doi:10.1371/journal.pone.0158035.g003

were down-regulated (~80% on ED8.5 and ~65% on ED9.5). After removal of RIKEN, EST,
unassigned and hypothetical gene sequences, 1024 functional unique genes were changed in
expression in ED8.5 and 2148 genes in ED9.5 hyperglycemic embryos (~45% of the original
number on both days). Of the genes that were differentially expressed on ED8.5, ~85% was also
differentially expressed on ED9.5 (Fig 4A), but represented only ~40% of all differentially
expressed genes on that day, implying that the main difference between ED8.5 and ED9.5 was
that the number rather than the identity of affected genes had expanded. A list of all differen-
tially expressed genes on ED8.5 and ED9.5, and their fold change, can be found in S3 Table.

To validate the SAGE analysis, among 2148 unique differentially expressed genes on ED9.5,
11 down-regulated (Ndufa6, Actgl, Glut4, Fgf2, Tpm4, Marcksll, Myosin1H, Axinl, Mrto4,

PLOS ONE | DOI:10.1371/journal.pone.0158035 July 19,2016 8/22



@. PLOS | ONE Gene Expression in Hyperglycemic Embryos

eurél tube
1410

366

embryogenesis

A . Epes B

1272

C eural tube

72

36

embryogenesis

ED8.5 ED9.5

Fig 4. Genes differentially expressed in hyperglycemic ED8.5 and ED9.5 embryos associated with cardiovascular and/or neural
defects. Panel A: 1024 and 2148 were differentially expressed, unique functional genes in embryos from hyperglycemic and control dams
on ED8.5 and 9.5, respectively, 876 of which were common to ED8.5 and ED9.5. The Jackson Laboratory Mouse Genome Database
(MGD) at the Mouse Genome Informatics website (URL:http://www.informatics.jax.org; October 2014) was queried by selecting
“Phenotypes & Mutant Alleles—Phenotypes, Alleles & Disease Models Query—Anatomical Systems Affected by Phenotypes” and
searching with “Cardiovascular system”, “Nervous system” and “Embryogenesis” as key words (total number of genes retrieved: 3955).
Panel B shows a Venn diagram of the number of genes associated with the respective categories in the MGD database. Of these genes,
131, 164 and 123 among the 1024 differentially expressed genes on ED8.5 (panel C), and 287, 362 and 243 out of 2148 genes on ED9.5
(panel D) were associated with cardiovascular, neural or embryogenesis defects, respectively.

doi:10.1371/journal.pone.0158035.g004

Psmc4 and Ptpnll) and 4 up-regulated (Mrps23, Rnaseh2c, Cdk1 and Ubxn8) genes were
selected for validation by quantitative PCR (qPCR). The prevalence ranged from rare to abun-
dant. In addition, 11 genes without change in expression (P,q; > 0.05 and fold-change ~1;
Gtf3c2, Rafl, Tab2, Trip13, Atp5cl, Cdc20, Tor3a, Mtchl, Pax3, Bax and Argl) were selected.
Fig 5 shows the correlation of expression levels of these genes between SOLiD SAGE sequenc-
ing and qPCR in control embryos (the values and the color code of the symbols are shown in
S4 Table). The range of expression across which this correlation was tested was ~10°. Apart
from 3 obvious outliers (Cdc20, Actgl, and Atp5cl), the expression as assayed by SAGE
sequencing and qPCR correlated (R* = 0.57). We have not been able to identify technical errors
that could have accounted for the outliers.
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Fig 5. Correlation of mRNA expression levels analyzed by SOLiD SAGE sequencing and quantitative PCR analysis. The mRNA of 8
euglycemic embryos on ED9.5 was quantified by SOLID SAGE sequencing. Based on P,q; (<0.05) and fold-change (>1.5) of differentially
expressed genes in SOLID SAGE sequencing, 11 genes without change, 4 up-regulated genes and 11 down-regulated genes were
selected for validation by gPCR. The mRNA of 8 other euglycemic embryos on ED9.5 was quantified by gPCR after cDNA synthesis by
gene-specific priming. The X-axis shows the number of reads after SOLiD SAGE sequencing and normalization for total reads in each
embryo. The Y-axis indicates gene expression in gPCR normalized by the expression of reference genes Tor3a and 18S. The error bar
indicates + SEM.

doi:10.1371/journal.pone.0158035.g005

3. Pathways regulated by maternal hyperglycemia

Since a global analysis does not reveal a direction in the changes and lacks functional detail, we
scrutinized the data for biological pathways with functional implications with MetaCore™. The
2305 transcripts on ED8.5 and the 4640 transcripts on ED9.5 that were differentially expressed
between embryos of hyperglycemic and control mice were analyze for linkage to pathways in
the MetaCore™ suite. As shown in Table 1, the cell cycle and cell proliferation on ED8.5 (posi-
tions 1-3 and 8 on ED8.5; position 4 on ED9.5), cytoskeletal remodeling and cell adhesion on
ED9.5 (positions 1, 2, 5, 7, and 9 on ED9.5; positions 4, 5, 7 and 9 on ED8.5), and oxidative
phosphorylation (position 3 on ED9.5 and 6 on ED8.5) were very prominent among the top 10
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Table 1. Highly regulated pathways in ED8.5 and ED9.5 hyperglycemic embryos.

Rank
ED 8.5

1
2
3
4
5
6
7
8
9
ED9.5 1
2
3
4
5
6
7
8
9

Pathways P value
Cell cycle _Spindle assembly and chromosome separation E-8
Development_FIt3 signaling E-6
Cell cycle_Role of Nek in cell cycle regulation E-6
Cytoskeleton remodeling_Cytoskeleton remodeling E-6
Cytoskeleton remodeling_Regulation of actin cytoskeleton by Rho GTPases E-6
Oxidative phosphorylation E-6
Cytoskeleton remodeling_Reverse signaling by ephrin B E-5
Development_IGF-1 receptor signaling E-5
Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling E-5
Cytoskeleton remodeling_Cytoskeleton remodeling E-10
Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling E-10
Oxidative phosphorylation E-8
Cell cycle_Chromosome condensation in prometaphase E-7
Cell adhesion_Integrin-mediated cell adhesion and migration E-7
Chemotaxis_ CXCR4 signaling pathway E-6
Cytoskeleton remodeling_Reverse signaling by ephrin B E-6
Development_EPO-induced Jak-STAT pathway E-6
Cell adhesion_Chemokines and adhesion E-6

Pathways that were identified by MetaCore™ as highly regulated by maternal hyperglycemia in ED8.5 and ED9.5 embryos. The selection of pathways was

limited to those with a P value < E-5.

doi:10.1371/journal.pone.0158035.t001

highly regulated pathways that differ between hyperglycemic and control embryos on ED8.5
and 9.5 (all P < E-5). The level of significance was higher on ED9.5, largely because more
genes were affected. Taking into account that the cited regulated pathways often shared genes,

the cell cycle was more prominently affected in hyperglycemic embryos on ED8.5 than ED9.5
(P value smaller on ED8.5 than ED9.5), whereas cytoskeleton remodeling, together with cell
adhesion and migration, and oxidative phosphorylation became more vulnerable on ED9.5 (P
value larger on ED8.5 than ED9.5). The suppression of oxidative phosphorylation by maternal
hyperglycemia became more important on ED9.5 as deduced from the ~100-fold smaller P
value on ED9.5 compared to ED8.5. Four pathways (oxidative phosphorylation, Wnt/TGFf
signaling, cytoskeleton remodeling (ephrin B), and cytoskeleton remodeling (remodeling),
were highly regulated in both ED8.5 and ED9.5 embryos. On closer inspection, only 0%, 4%,
12%, and 19% of the 21, 16, 31 and 27 genes, respectively, that were differentially regulated in
these pathways at ED8.5, were not present in the same pathways on ED9.5. Because the num-
ber of genes affected in these pathways increased 1.5-2.5-fold, this finding indicates that the
number of affected genes in these pathways increased between ED8.5 and ED9.5 rather than

the identity of the pathways involved.

4. Differentially expressed genes are involved in heart and/or neural-

tube defects

To establish if the differentially expressed genes on ED8.5 and ED9.5 could account for heart
or neural-tube defects if downregulated, we queried the Jackson Laboratory Mouse Genome

Database (MGD; for protocol, see the legend of Fig 4). This database contains 3781 genes that,
if deficient, cause cardiovascular defects, 5195 genes that cause neural (“cerebrospinal”) defects,
and 2746 genes that have general effects on embryonic development (database queried in
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October 2014; Fig 4B). Among the 1024 genes that were present in the MGD and differentially
expressed in hyperglycemic and control embryos on ED8.5, 131, 164 and 123 (6.8, 6.2, and
8.9% in each group) were related to defects in cardiovascular, neural, and general embryonic
development (Fig 4C), respectively, while among the 2148 genes that were in the database and
differentially expressed on ED9.5, 287, 362, and 243 (14.9, 13.7 and 17.6% in each group) were
related to the respective defects (Fig 4D). Of the differentially expressed genes that were linked
with cardiovascular or neural-tube defects, 23.3% was associated with both conditions on both
ED8.5 and ED9.5 (~13.6% and ~16.9% were exclusively associated with cardiovascular and
neural-tube defects, respectively, on both days (S4 Fig)). In total, 26% of the differentially
expressed genes in either ED8.5 or ED9.5 hyperglycemic embryos were causally associated, if
deficient, with cardiovascular or neural defects according to the MGD database (S5 Fig). Of the
genes relevant to each defect that were identified on ED8.5, 85.5% was still present in the group
of affected genes on ED9.5 (Fig 4A), again implying that the hyperglycemic condition of the
embryos had aggravated their condition between ED8.5 and ED9.5.

It should be kept in mind that the MGD database describes the phenotype after complete
inactivation of single genes, whereas a partial polygenic etiology is considered more likely. We,
therefore, checked the number of genes that were >5-fold and >10-fold up- or downregulated
on ED8.5 and ED9.5, and were associated with cardiovascular or neural malformations if
absent (S5 Fig). On ED8.5, 217 and 55 genes were changed >5- and >10-fold, respectively,
while on ED9.5, these numbers were 299 and 90, respectively. Of these, 23-24% and 4-5%
were, if deficient, associated with congenital malformations on ED8.5 and ED9.5, respectively.
A 10-fold reduction is what one reads in published knockdown experiments. Furthermore, the
expression of almost all of them (~98%) was suppressed and at least some of the affected genes
may well have acted synergistically.

The 106, 138 and 99 genes that were differentially expressed in hyperglycemic embryos on
both ED8.5 and 9.5 in cardiovascular, neural and whole-embryonic developmental defects,
respectively, were used for pathway analysis in MetaCore™ and found to be also mainly
involved in cytoskeletal organization, including cell adhesion (P < 5E-5; not shown). This find-
ing underscores that the pathways that were identified as being highly regulated by hyperglyce-
mia in ED8.5 and ED9.5 embryos (Table 1) are very relevant for the malformations in the
cardiovascular and neural systems that are observed in diabetic pregnancies. As already stated,
a high percentage of these genes affected both cardiovascular and neural development (Fig 4).

5. Energy metabolism

The expression of genes involved in oxidative phosphorylation was strongly regulated in both
ED8.5 and ED9.5 hyperglycemic embryos (Table 1). The expression of subunits of mitochon-
drial enzymes Cox8a (cytochrome c oxidase subunit 8A) and Atp5e (ATP synthase subunit)
were, for example, >10-fold down-regulated, whereas Ndufal (NADH dehydrogenase sub-
complex) was 5-fold up-regulated on ED9.5, all suggesting inhibition of mitochondrial respira-
tion and adaptation to glycolytic flux. We anticipated that hyperglycemia would also affect the
expression of glucose transporters. Fig 6 shows that Glut1, -2, and -3 (Slc2al-3) were most
highly expressed, but all 3 transporters showed a pronounced decrease in expression between
ED7.5 and ED9.5, and were not affected by hyperglycemia, except for a trend for Glut3

(P =0.08). In contrast, the insulin-responsive glucose transporters Glut4, -8, and -10 (Slc2a4,
-8, and -10) were expressed to a much lower extent, but increased with development and, with
the exception of Glut8, were negatively affected by hyperglycemia. Glut4 was most sensitive in
this respect, with a ~5-fold decreased expression in hyperglycemic embryos. The expression of
sodium-coupled glucose transporters was extremely low (not shown).
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Fig 6. Expression of glucose transporters in control and hyperglycemic embryos. The most highly expressed glucose transporters
(Glut1-3) all declined during normal development (ED7.5-9.5), whereas the insulin-regulated glucose transporters (Glut4, -8, and -10)
increased in concentration (note that the Glut1-3 values are expressed after division by 1,000). Hyperglycemia had no (Glut1 and -2) or a
small negative effect (Glut3 on ED8.5 only) on the highly expressed glucose transporters, but clearly suppressed two of the insulin-
regulated transporters. Diamond symbols indicate the control group and square symbols the hyperglycemic group. P values compare
expression between hyperglycemic and control embryos on the indicated day.

doi:10.1371/journal.pone.0158035.9006

To investigate whether these changes in gene expression reflected differences in mitochon-
drial function and/or glycolysis, we measured the rates of oxygen consumption and extracellu-
lar acidification in cells of control and hyperglycemic ED9.5 embryos. As shown in Fig 7, the
rate of basal oxygen consumption in diabetic cells was ~85% of that in control cells (P = 0.03).
No differences were observed after oligomycin, FCCP, and antimycin A addition, revealing
that the maximal respiration capacity (FCCP addition) and the rate of non-mitochondrial oxy-
gen consumption (antimycin A) were not different. Oxidative phosphorylation (basal OCR—
oligomycin-suppressed OCR) in cells from control and hyperglycemic embryos were not dif-
ferent (68 + 11 and 47 + 10 pmol/min.mg protein, respectively (P = 0.19)). The extracellular
acidification rate was significantly lower in cells from hyperglycemic than from control
embryos (~70%; P = 0.01). Furthermore, glycolysis already functioned at the maximal rate
under basal conditions, as the addition of oligomycin did not increase ECAR. In addition,
these data show that ATP synthesis from glycolysis (~25 nmol/min.mg protein) in cells from
control embryos is ~150-fold higher than that from oxidative phosphorylation (~0.17 nmol/
min.mg protein; phosphate/oxygen ratio set at 2.5). Because both oxidative phosphorylation
and glycolysis are ~30% lower in cells from hyperglycemic embryos, the ratio remains similar.
These data show that glycolytic activity was the main source of energy production in ED9.5
embryos and that its activity and capacity was substantially lower in hyperglycemic embryos,
indicating they had an energy problem.
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Fig 7. Oxygen consumption and extracellular acidification in cells of control and hyperglycemic embryos on ED9.5. Cells obtained
from 12 hyperglycemic and 17 control ED9.5 embryos were used to measure the rate of oxygen consumption (OCR; panel A) and
extracellular acidification (ECAR; panel B). Gray bars represent cells from control and black bars from hyperglycemic embryos. The bars
indicate the OCR and ECAR under basal conditions and after sequential addition of oligomycin, FCCP and antimycin A. Data represent 3
consecutive measurements of separate dishes with cells from 4 hyperglycemic embryos and 6 control embryos on average. The Y-axis
indicates oxygen consumption (pmoles/min.mg protein) or extracellular acidification (mpH/min.mg protein). The asterisk indicates a
significant difference between control and hyperglycemic embryos. **: P <0.01. *: P = 0.03 (basal OCR control vs diabetic) and P = 0.01
(ECAR after treatment of oligomycin control vs diabetic).

doi:10.1371/journal.pone.0158035.g007

Discussion

Earlier studies on ED10.5-15.5 embryos showed that maternal hyperglycemia affects the
expression of genes involved in apoptosis, proliferation, migration and differentiation [16-19].
In the present study, we examined the effect of maternal hyperglycemia in mouse embryos dur-
ing gastrulation and early organogenesis (ED8.5 and ED9.5). The main findings were that preg-
nancy aggravated hyperglycemia in mildly diabetic dams, as it does in humans [41], and that
hyperglycemia in the embryo developed before the onset of insulin production and affected the
expression of genes involved in the regulation of cell proliferation, cytoskeleton, and energy
metabolism. Approximately 25% of the differentially regulated genes were associated with car-
diovascular and neural malformations if deficient.

Hyperglycemia and glucose transport

Insulin (and glucagon) can be detected only in embryos with >20 somites (ED9.25) [42], and
maternal insulin does not reach the embryo proper [43]. In agreement, our gene expression
data do not show expression of the insulin-signaling factors Insr, Irs1/2, or Aktl in ED8.5 or
ED9.5 embryos (Pik3 is expressed). Embryonic hyperglycemia, therefore, most likely exerts its
teratogenic effects in the absence of insulin, that is, directly on sensitive cells via glucose trans-
porters or as osmolyte.

Although Glutl, -2, and -3 are mostly expressed in the extraembryonic tissues (yolk sac,
amnion and/or ectoplacental cone) [44,45], expression of GlutI and Glut3 in the embryo was
>100-fold and that of Glut2 >10-fold higher than the other glucose transporters. Expression
of these Gluts peaked, in agreement with literature [44,46-49], during implantation and gastru-
lation, and declined in a pronounced manner after ED7.5 (Glut2, Glut3) or ED8.5 (Glutl). Also
in agreement with literature [45,50,51], the expression of Glut1, -2, and -3 was not or only
mildly affected by hyperglycemia. Since Glut2 deficiency appears to protect the embryo from
the teratogenic effects of hyperglycemia [51], the pronounced decline of its expression after
ED?7.5 may explain the window of sensitivity to hyperglycemia around ED7.5 [15].
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In contrast to Glutl, -2, and -3, the expression of Glut4 and Glut10 increased with develop-
ment and was strongly suppressed by hyperglycemia. Expression of Glut4 in postimplantation
embryos first appears in the yolk sac and ectoplacental cone, and then increasingly also in the
embryonic tissues [48,52]. GLUT4, -8 and -10 are all recruited to the plasma membrane via an
insulin-dependent increase in cytoskeletal actin polymerization [53-55] and become expressed
only when endogenous insulin production starts at ED9.5 [42]. The phenotype of Glut4- [56],
Glut8-[57], or Glut10-deficient [58] embryos does not suggest a role for these transporters in
hyperglycemic embryopathy, but it remains to be established whether the deficiency protects
against the adverse effects of hyperglycemia in early development [59].

Hyperglycemia and the cytoskeleton

The cytoskeleton plays a prominent role in the changes in cell shape and the morphogenetic
movements that characterize cell behavior during gastrulation and organogenesis [60,61].
Hyperglycemia suppresses the cell cycle [62] and causes a pronounced downregulation of the
expression of many genes of key components of the cytoskeleton in embryos. Embryonic
hyperglycemia suppressed the expression B- and especially y-cytoskeletal actin, the cobble-
stones of the dynamic submembranous cytoskeletal network, ~3- and ~100-fold, respectively.
The expression of associated small GTPases, including Rho, Cdc42, and Rac, and the ezrin,
radixin, and moesin (ERM) proteins [63,64] was also affected. Exposure to glucose phosphory-
lates and activates Cdc42. Interaction of active Cdc42 with WASP receptors activates ARP2/3,
which enhances actin nucleation and branching. Activated ARP 2/3, in turn, joins onto pre-
existing microfilaments and creates a site for the extension of new microfilaments (branching).
Cofilin, another downstream signal of Cdc42 and other members of the RHO family that is
active in its dephosphorylated form, promotes actin depolymerization. Integrins or PKC are
major activators of cofilin-1. The balance of N-WASP and cofilin activities determines the
direction of cytoskeleton dynamics. Since the expression of virtually all these genes was
affected, cytoskeletal dysfunction must be a prominent sequel of embryonic hyperglycemia.
Hyperglycemia also enhances the depolymerization and polymerization cycle rate (“dynamic
instability”) of cytoskeletal actin [63,65,66]. This post-translational effect of hyperglycemia
appears to be mediated by the hyperosmotic stress it causes [67,68]. The highly significant and
largely inhibitory effects of maternal diabetes on the structure and function of the cytoskeleton
indicates that the teratological effects of embryonic hyperglycemia are at least in part mediated
by this fairly general insult on cellular integrity.

Hyperglycemia and metabolism

The preimplantation embryo becomes exposed to hypoxic conditions when entering the uterus
[69]. Coincident with the accompanying transition to glycolytic energy metabolism, the mito-
chondrial cristae become tubular and vesicular, while the reappearance of lamellation of the
cristae during early organogenesis is a sign of mitochondrial maturation [70-72]. In agreement,
oxidative phosphorylation begins to contribute increasingly to energy metabolism after ED9.5
[73,74]. Embryonic hyperglycemia delays this maturation and induces mitochondrial swelling
[75]. In agreement, we observed that maternal hyperglycemia suppressed the expression of
many genes involved in mitochondrial function. Perhaps even more importantly, we showed
that on ED9.5, glycolytic energy production at ED9.5 still accounts for ~99.5% of total energy
production. To place this number in perspective, one has to realize that the oxygen consump-
tion rate at ED9.5 was only ~1% of that of primary hepatocytes, while glycolysis measured as
the rate of extracellular acidification exceeded that of primary hepatocytes by ~10-fold in
experiments carried out in the same month on the same Seahorse analyzer (EH Gilglioni,
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unpublished data). These numbers demonstrate that glycolysis is still the predominant energy
source at ED9.5 and that the ~30% decline in glycolytic activity and capacity deprived hyper-
glycemic ED9.5 embryos of a substantial share of their capacity to produce ATP. This finding
contrasts with the prevalent hypothesis that the teratogenic effects of hyperglycemia have to be
ascribed to the oxidative stress that arises from flooding the embryonic mitochondria with
respiratory substrates [76,77], and/or to the activation of the hexosamine pathway and associ-
ated inhibition of NADPH regeneration[78], which would compromise the still poorly devel-
oped antioxidative defense [79].

Hyperglycemia and congenital malformations

The association of maternal diabetes and congenital malformations of the cardiovascular and
neural systems is quite strong [2,5]. To demonstrate that some of the genes that are differentially
regulated by hyperglycemia are indeed causally involved in the development of malformations,
one has to interfere with their expression. In this respect, it should be kept in mind that the
majority of genes were downregulated on both ED8.5 and ED9.5 (~80% on ED8.5 and 65% on
ED?9.5). We, therefore, queried the Jackson Laboratory MGD database of genes causing cardio-
vascular or neural if deficient. This query showed that 20-25% of the genes regulated by hyper-
glycemia have already been demonstrated to cause heart, neural-tube, or embryonic
malformations if deficient. Almost one quarter of these genes are shared between heart and neu-
ral tube, in agreement with the fact that these malformations often co-occur [2,4,5]. A similar
approach was carried out on ED10.5 embryos from hyperglycemic and control mice [16,17]. In
this study, which focused on neural-tube defects, the genes that were affected by maternal diabe-
tes and that caused malformations were far more often part of the Wnt, Hh, Notch, or MAPK
signaling pathways than of the cytoskeletal network. These data suggest that the hyperglycemia-
induced involvement of the cytoskeleton is no longer prominent at ED10.5. Similarly, the effect
of hyperglycemia on mitochondrial structure reportedly disappears with age in the embryo [75].

Limitations of the Study

The choice of the animal model is obviously crucial for the relevance of the outcome of the
study. We used STZ to induce diabetes and insulin pellets to modify the type-1 diabetic state
into the more type-2-like diabetes of pregnancy. In agreement with this aim, the dependence
on insulin increased with the duration of pregnancy. The genetic non-obese diabetic (NOD)
model resembles the STZ model in also being an autoimmune type-1-like model [80], but has
not been studied extensively as a diabetes of pregnancy model, possibly because it also pro-
duces laterality defects [81,82]. Recently, a type-2-like murine model of diabetic pregnancy was
reported in which insulin resistance was induced by feeding mice for 15 weeks a very high-fat
(~60 en%) diet [83]. The controls were fed a 10 en% fat diet. However, as we (unpublished
observations) and others [84,85] have experienced, a high fat content of the diet (>20 en%), as
found in the 5020 (9F) and 5015 mouse diets, appears to be a precondition for the development
of cardiovascular and neural tube-closure defects in the offspring, because otherwise similar
diets that contain <13.5 en% (e.g. mouse diet 5001) do not produce the malformations. Since
the effect of dietary fat is established almost instantaneously [84], diet-induced obesity models
of diabetic pregnancy offer no obvious advantages over the established STZ model as modified
by Loeken [11]. Another caveat of our study is that we carried out gene expression analysis on
only 2 stages of development (ED8.5 and 9.5). These stages, which correspond to very early
pregnancy in human (~3 weeks gestation), were considered potentially interesting, because
they precede the appearance of malformations. Because we could not select for affected
embryos we opted to use a validated mouse model of diabetic pregnancy.
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Supporting Information

S1 Appendix. The filled out “ARRIVE” guidelines checklist.
(PDF)

S1 Fig. Body weight after STZ treatment and linbit implantation. Body weight was mea-
sured before STZ treatment (“0”), 14 days after the first STZ injection, on the day of linbit
implantation (arrow) and on the indicated days after linbit implantation. Round (N = 4) and
diamond (N = 12) symbols represent two different series of female mice. The error bar show
SEMs.

(TIF)

S2 Fig. H&E stained sections of control and hyperglycemic ED9.5 mouse embryos. Panels A
and C: control, normoglycemic embryos; panels B and D: experimental, hyperglycemic
embryos. Bar: 100 pum.

(TIF)

$3 Fig. Correlation between total RNA input and number of sequenced genes after SOLiD
SAGE sequencing. Between ~0.3 and 5.2ug total RNA from 29 hyperglycemic and control
embryos was used for SOLIiD SAGE deep sequencing. The X-axis indicates the amount of RNA
used for cDNA synthesis and sequencing, while the Y-axis indicates the saturation in the num-
ber of unique expressed genes for each individual embryo.

(TIF)

$4 Fig. Genes differentially expressed in hyperglycemic ED8.5 and ED9.5 embryos associ-
ated with cardiovascular and/or neural defects. Panel A: 1024 and 2148 were differentially
expressed unique functional genes in embryos from hyperglycemic and control dams on ED8.5
and 9.5, respectively, 876 of which were common to ED8.5 and ED9.5. Panels B-D show Venn
diagrams of the number of differentially expressed genes associated with cardiovascular (panel
B), neural (panel C), and both cardiovascular and neural malformations in Jackson’s MGD
database in ED8.5 (blue), ED9.5 (red), or both ED8.5 and ED9.5 embryos (overlap).

(TIF)

S5 Fig. Prevalence of genes that were differentially regulated in hyperglycemic ED8.5 and
ED9.5 embryos in the MGD data base. Approximately 45% of the detected differentially
expressed sequences represented unique genes at both ED8.5 and ED9.5 (removal of Riken,
expressed sequence tags (EST), unassigned and hypothetical genes). Of these, ~21% and ~5%
were 5- and 10-fold upregulated, respectively, at ED8.5 and ~14% and ~4%, respectively at
ED9.5. Approximately 26% of the differentially regulated genes are associated with cardiovas-
cular, neural, or embryogenesis defects if absent. (MGD data base). Among > 5-fold upregu-
lated genes, this percentage is 23-24% and among > 10-fold upregulated genes 18-20%.
(TIF)

S1 Table. Criteria to determine the developmental stage of ED8.5 and ED9.5 embryos. The
age of embryos was defined according to the criteria of Kaufman [30].
(DOC)

$2 Table. PCR primers used. In all cases, the annealing temperature was 60°C.
(DOC)

S3 Table. Unique differentially expressed genes in ED8.5 and ED9.5 hyperglycemic and
control embryos, and their presence or absence in the MGD database. All listed genes (1024
at ED8.5 (sheet 1) and 2148 at ED9.5 (sheet 2)) are unique and were >1.5-fold in- or decreased
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in expression (P,q; < 0.05) in hyperglycemic embryos. Columns A to H represent “Gene
Name”, “Ensembl Gene”, “Unigene”, “Fold Change”, “Log2 Fold Change”, “P adjusted value”,
“Chromosome” and “Gene Description”, respectively. The gray fields indicate that the indi-
cated gene was > 5-fold up- or downregulated and present in the subfield cardiovascular, neu-
ral, and embryogenesis defects of the Jackson Laboratory Mouse Genome Database (MGD).
Columns L to W represent the normalized number of reads for the hyperglycemic and control
embryos at ED8.5 and columns L to AA at ED9.5.
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