2,785 research outputs found

    Anomaly Detection in Paleoclimate Records using Permutation Entropy

    Get PDF
    Permutation entropy techniques can be useful in identifying anomalies in paleoclimate data records, including noise, outliers, and post-processing issues. We demonstrate this using weighted and unweighted permutation entropy of water-isotope records in a deep polar ice core. In one region of these isotope records, our previous calculations revealed an abrupt change in the complexity of the traces: specifically, in the amount of new information that appeared at every time step. We conjectured that this effect was due to noise introduced by an older laboratory instrument. In this paper, we validate that conjecture by re-analyzing a section of the ice core using a more-advanced version of the laboratory instrument. The anomalous noise levels are absent from the permutation entropy traces of the new data. In other sections of the core, we show that permutation entropy techniques can be used to identify anomalies in the raw data that are not associated with climatic or glaciological processes, but rather effects occurring during field work, laboratory analysis, or data post-processing. These examples make it clear that permutation entropy is a useful forensic tool for identifying sections of data that require targeted re-analysis---and can even be useful in guiding that analysis.Comment: 15 pages, 7 figure

    Vasoactive-ventilation-renal score reliably predicts hospital length of stay after surgery for congenital heart disease

    Get PDF
    Objectives We aimed to further validate the vasoactive-ventilation-renal score as a predictor of outcome in patients recovering from surgery for congenital heart disease. We also sought to determine the optimal time point within the early recovery period at which the vasoactive-ventilation-renal score should be measured. Methods We prospectively reviewed consecutive patients recovering from cardiac surgery within our intensive care unit between January 2015 and June 2015. The vasoactive-ventilation-renal score was calculated at 6, 12, 24, and 48 hours postoperatively as follows: vasoactive-ventilation-renal score = ventilation index + vasoactive-inotrope score + Δ creatinine [change in serum creatinine from baseline*10]. Primary outcome of interest was prolonged hospital length of stay, defined as length of stay in the upper 25%. Receiver operating characteristic curves were generated, and areas under the curve with 95% confidence intervals were calculated for all time points. Multivariable logistic regression modeling also was performed. Results We reviewed 164 patients with a median age of 9.25 months (interquartile range, 2.6-58 months). Median length of stay was 8 days (interquartile range, 5-17.5 days). The area under the curve value for the vasoactive-ventilation-renal score as a predictor of prolonged length of stay (>17.5 days) was greatest at 12 hours postoperatively (area under the curve = 0.93; 95% confidence interval, 0.89-0.97). On multivariable regression analysis, after adjustment for potential confounders, the 12-hour vasoactive-ventilation-renal score remained a strong predictor of prolonged hospital length of stay (odds ratio, 1.15; 95% confidence interval, 1.10-1.20). Conclusions In a heterogeneous population of patients undergoing surgery for congenital heart disease, the novel vasoactive-ventilation-renal score calculated in the early postoperative recovery period can be a strong predictor of prolonged hospital length of stay

    Identifying Optimal Methods for Addressing Confounding Bias When Estimating the Effects of State-Level Policies

    Full text link
    Background: Policy evaluation studies that assess how state-level policies affect health-related outcomes are foundational to health and social policy research. The relative ability of newer analytic methods to address confounding, a key source of bias in observational studies, has not been closely examined. Methods: We conducted a simulation study to examine how differing magnitudes of confounding affected the performance of four methods used for policy evaluations: (1) the two-way fixed effects (TWFE) difference-in-differences (DID) model; (2) a one-period lagged autoregressive (AR) model; (3) augmented synthetic control method (ASCM); and (4) the doubly robust DID approach with multiple time periods from Callaway-Sant'Anna (CSA). We simulated our data to have staggered policy adoption and multiple confounding scenarios (i.e., varying the magnitude and nature of confounding relationships). Results: Bias increased for each method: (1) as confounding magnitude increases; (2) when confounding is generated with respect to prior outcome trends (rather than levels), and (3) when confounding associations are nonlinear (rather than linear). The AR and ASCM have notably lower root mean squared error than the TWFE model and CSA approach for all scenarios; the exception is nonlinear confounding by prior trends, where CSA excels. Coverage rates are unreasonably high for ASCM (e.g., 100%), reflecting large model-based standard errors and wide confidence intervals in practice. Conclusions: Our simulation study indicated that no single method consistently outperforms the others. But a researcher's toolkit should include all methodological options. Our simulations and associated R package can help researchers choose the most appropriate approach for their data.Comment: 4 figures, 1 table, supplemental material including cod

    Associations of functional connectivity and walking performance in multiple sclerosis

    Get PDF
    Background Persons with multiple sclerosis (MS) often demonstrate impaired walking performance, and neuroimaging methods such as resting state functional connectivity (RSFC) may support a link between central nervous system damage and disruptions in walking. Objectives This study examined associations between RSFC in cortical networks and walking performance in persons with MS. Methods 29 persons with MS underwent 3-T brain magnetic resonance imaging (MRI) and we computed RSFC among 68 Gy matter regions of interest in the brain. Participants completed the Timed 25-foot Walk as a measure of walking performance. We examined associations using partial Pearson product-moment correlation analyses (r), controlling for age. Results There were eight cortical brain regions that were significantly associated with the T25FW, including the left parahippocampal gyrus and transverse temporal gyrus, and the right fusiform gyrus, inferior temporal gyrus, lingual gyrus, pericalcarine cortex, superior temporal gyrus, and transverse temporal gyrus. Conclusions We provide novel evidence that RSFC can be a valuable tool to monitor the motor and non-motor networks impacted in MS that relate to declines in motor impairment. RSFC may identify critical nodes involved in a range of motor tasks such as walking that can be more sensitive to disruption by MS

    Correlates of Complete Childhood Vaccination in East African Countries.

    Get PDF
    Despite the benefits of childhood vaccinations, vaccination rates in low-income countries (LICs) vary widely. Increasing coverage of vaccines to 90% in the poorest countries over the next 10 years has been estimated to prevent 426 million cases of illness and avert nearly 6.4 million childhood deaths worldwide. Consequently, we sought to provide a comprehensive examination of contemporary vaccination patterns in East Africa and to identify common and country-specific barriers to complete childhood vaccination. Using data from the Demographic and Health Surveys (DHS) for Burundi, Ethiopia, Kenya, Rwanda, Tanzania, and Uganda, we looked at the prevalence of complete vaccination for polio, measles, Bacillus Calmette-Guérin (BCG) and DTwPHibHep (DTP) as recommended by the WHO among children ages 12 to 23 months. We conducted multivariable logistic regression within each country to estimate associations between complete vaccination status and health care access and sociodemographic variables using backwards stepwise regression. Vaccination varied significantly by country. In all countries, the majority of children received at least one dose of a WHO recommended vaccine; however, in Ethiopia, Tanzania, and Uganda less than 50% of children received a complete schedule of recommended vaccines. Being delivered in a public or private institution compared with being delivered at home was associated with increased odds of complete vaccination status. Sociodemographic covariates were not consistently associated with complete vaccination status across countries. Although no consistent set of predictors accounted for complete vaccination status, we observed differences based on region and the location of delivery. These differences point to the need to examine the historical, political, and economic context of each country in order to maximize vaccination coverage. Vaccination against these childhood diseases is a critical step towards reaching the Millennium Development Goal of reducing under-five mortality by two-thirds by 2015 and thus should be a global priority

    The Ionized Gas and Nuclear Environment in NGC 3783 V. Variability and Modeling of the Intrinsic Ultraviolet Absorption

    Full text link
    We present results on the location, physical conditions, and geometry of the outflow in the Seyfert 1 galaxy NGC 3783 from a study of the variable intrinsic UV absorption. Based on 18 observations with HST/STIS and 6 observations with FUSE, we find: 1) The absorption from the lowest-ionization species in each of the three strong kinematic components varied inversely with the continuum flux, indicating the ionization structure responded to changes in the photoionizing flux over the weekly timescales sampled by our observations. 2) A multi- component model with an unocculted NLR and separate BLR and continuum line-of-sight covering factors predicts saturation in several lines, consistent with the lack of observed variability. 3) Column densities for the individual metastable levels are measured from the resolved C III *1175 absorption complex observed in one component. Based on our computed metastable level populations, the electron density of this absorber is ~3x10^4 cm^-3. Photoionization modeling results place it at ~25 pc from the central source. 4) Using time-dependent calculations, we are able to reproduce the detailed variability observed in this absorber, and derive upper limits on the distances for the other components of 25-50 pc. 5) The ionization parameters derived for the higher ionization UV absorbers are consistent with the modeling results for the lowest-ionization X-ray component, but with smaller total column density. They have similar pressures as the three X-ray ionization components. These results are consistent with an inhomogeneous wind model for the outflow in NGC 3783. 6) Based on the predicted emission-line luminosities, global covering factor constraints, and distances derived for the UV absorbers, they may be identified with emission- line gas observed in the inner NLR of AGNs. (abridged)Comment: 30 pages, 18 figures (7 color), emulateapj, accepted for publication in The Astrophysical Journa

    Holocene Earthquakes and Right-lateral Slip on the Left-lateral Darrington-Devils Mountain Fault Zone, Northern Puget Sound, Washington

    Get PDF
    Sources of seismic hazard in the Puget Sound region of northwestern Washington include deep earthquakes associated with the Cascadia subduction zone, and shallow earthquakes associated with some of the numerous crustal (upper-plate) faults that crisscross the region. Our paleoseismic investigations on one of the more prominent crustal faults, the Darrington–Devils Mountain fault zone, included trenching of fault scarps developed on latest Pleistocene glacial sediments and analysis of cores from an adjacent wetland near Lake Creek, 14 km southeast of Mount Vernon, Washington. Trench excavations revealed evidence of a single earthquake, radiocarbon dated to ca. 2 ka, but extensive burrowing and root mixing of sediments within 50–100 cm of the ground surface may have destroyed evidence of other earthquakes. Cores in a small wetland adjacent to our trench site provided stratigraphic evidence (formation of a laterally extensive, prograding wedge of hillslope colluvium) of an earthquake ca. 2 ka, which we interpret to be the same earthquake documented in the trenches. A similar colluvial wedge lower in the wetland section provides possible evidence for a second earthquake dated to ca. 8 ka. Three-dimensional trenching techniques revealed evidence for 2.2 ± 1.1 m of right-lateral offset of a glacial outwash channel margin, and 45–70 cm of north-side-up vertical separation across the fault zone. These offsets indicate a net slip vector of 2.3 ± 1.1 m, plunging 14° west on a 286°-striking, 90°-dipping fault plane. The dominant right-lateral sense of slip is supported by the presence of numerous Riedel R shears preserved in two of our trenches, and probable right-lateral offset of a distinctive bedrock fault zone in a third trench. Holocene north-side-up, right-lateral oblique slip is opposite the south-side-up, left-lateral oblique sense of slip inferred from geologic mapping of Eocene and older rocks along the fault zone. The cause of this slip reversal is unknown but may be related to clockwise rotation of the Darrington–Devils Mountain fault zone into a position more favorable to right-lateral slip in the modern N-S compressional stress field
    • …
    corecore