337 research outputs found
Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib
Imatinib mesylate induces complete cytogenetic responses in patients with chronic myeloid leukemia (CML), yet many patients have detectable BCR-ABL transcripts in peripheral blood even after prolonged therapy. Bone marrow studies have shown that this residual disease resides within the stem cell compartment. Quiescence of leukemic stem cells has been suggested as a mechanism conferring insensitivity to imatinib, and exposure to the Granulocyte-Colony Stimulating Factor (G-CSF), together with imatinib, has led to a significant reduction in leukemic stem cells in vitro. In this paper, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that the addition of G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent; otherwise it does not modulate the leukemic cell burden. The latter scenario is in agreement with clinical findings in a pilot study administering imatinib continuously or intermittently, with or without G-CSF (GIMI trial). Furthermore, our model predicts that the addition of G-CSF leads to a higher risk of resistance since it increases the production of cycling leukemic stem cells. Although the pilot study did not include enough patients to draw any conclusion with statistical significance, there were more cases of progression in the experimental arms as compared to continuous imatinib. Our results suggest that the additional use of G-CSF may be detrimental to patients in the clinic
Correction of beta-thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients
Beta-thalassemia is a common monogenic disorder due to mutations in the beta-globin gene and gene therapy, based on autologous transplantation of genetically corrected haematopoietic stem cells (HSCs), holds the promise to treat patients lacking a compatible bone marrow (BM) donor. We recently showed correction of murine beta-thalassemia by gene transfer in HSCs with the GLOBE lentiviral vector (LV), expressing a transcriptionally regulated human beta-globin gene. Here, we report successful correction of thalassemia major in human cells, by studying a large cohort of pediatric patients of diverse ethnic origin, carriers of different mutations and all candidates to BM transplantation. Extensive characterization of BM-derived CD34(+) cells before and following gene transfer shows the achievement of high frequency of transduction, restoration of haemoglobin A synthesis, rescue from apoptosis and correction of ineffective erythropoiesis. The procedure does not significantly affect the differentiating potential and the relative proportion of haematopoietic progenitors. Analysis of vector integrations shows preferential targeting of transcriptionally active regions, without bias for cancer-related genes. Overall, these results provide a solid rationale for a future clinical translation
A Novel Assay to Trace Proliferation History In Vivo Reveals that Enhanced Divisional Kinetics Accompany Loss of Hematopoietic Stem Cell Self-Renewal
BACKGROUND: The maintenance of lifelong blood cell production ultimately rests on rare hematopoietic stem cells (HSCs) that reside in the bone marrow microenvironment. HSCs are traditionally viewed as mitotically quiescent relative to their committed progeny. However, traditional techniques for assessing proliferation activity in vivo, such as measurement of BrdU uptake, are incompatible with preservation of cellular viability. Previous studies of HSC proliferation kinetics in vivo have therefore precluded direct functional evaluation of multi-potency and self-renewal, the hallmark properties of HSCs. METHODOLOGY/PRINCIPAL FINDINGS: We developed a non-invasive labeling technique that allowed us to identify and isolate candidate HSCs and early hematopoietic progenitor cells based on their differential in vivo proliferation kinetics. Such cells were functionally evaluated for their abilities to multi-lineage reconstitute myeloablated hosts. CONCLUSIONS: Although at least a few HSC divisions per se did not influence HSC function, enhanced kinetics of divisional activity in steady state preceded the phenotypic changes that accompanied loss of HSC self-renewal. Therefore, mitotic quiescence of HSCs, relative to their committed progeny, is key to maintain the unique functional and molecular properties of HSCs
Risk Factors, Molecular Epidemiology and Outcomes of Ertapenem-Resistant, Carbapenem-Susceptible Enterobacteriaceae: A Case-Case-Control Study
Background: Increasing prevalence of ertapenem-resistant, carbapenem-susceptible Enterobacteriaceae (ERE) in Singapore presents a major therapeutic problem. Our objective was to determine risk factors associated with the acquisition of ERE in hospitalized patients; to assess associated patient outcomes; and to describe the molecular characteristics of ERE. Methods: A retrospective case-case-control study was conducted in 2009 at a tertiary care hospital. Hospitalized patients with ERE and those with ertapenem-sensitive Enterobacteriaceae (ESE) were compared with a common control group consisting of patients with no prior gram-negative infections. Risk factors analyzed included demographics; co-morbidities; instrumentation and antibiotic exposures. Two parallel multivariate logistic regression models were performed to identify independent variables associated with ERE and ESE acquisition respectively. Clinical outcomes were compared between ERE and ESE patients. Results: Twenty-nine ERE cases, 29 ESE cases and 87 controls were analyzed. Multivariate logistic regression showed that previous hospitalization (Odds ratio [OR], 10.40; 95 % confidence interval [CI], 2.19–49.20) and duration of fluoroquinolones exposure (OR, 1.18 per day increase; 95 % CI, 1.05–1.34) were unique independent predictors for acquiring ERE. Duration of 4 th-generation cephalosporin exposure was found to predict for ESE acquisition (OR, 1.63 per day increase; 95 % CI, 1.05– 2.54). In-hospital mortality rates and clinical response rates were significantly different between ERE and ESE groups
Purification and Characterization of a Sperm Motility Inhibiting Factor from Caprine Epididymal Plasma
Several studies have been reported on the occurrence of sperm motility inhibiting factors in the male reproductive fluids of different mammalian species, but these proteins have not been adequately purified and characterized. A novel sperm motility inhibiting factor (MIF-II) has been purified from caprine epididymal plasma (EP) by Hydroxylapatite gel adsorption chromatography, DEAE-Cellulose ion-exchange chromatography and chromatofocusing. The MIF-II has been purified to apparent homogeneity and the molecular weight estimated by Sephacryl S-300 gel filtration is 160 kDa. MIF-II is a dimeric protein, made up of two subunits each having a molecular mass of 80 kDa as shown by SDS-PAGE. The isoelectric point of MIF-II is 5.1 as determined by chromatofocusing and isoelectric focusing. It is a heat labile protein and maximal active at the pH 6.9 to 7.5. The sperm motility inhibiting protein factor at 2 µg/ml (12.5 nM) level showed maximal motility-inhibiting activity. The observation that the epididymal plasma factor lowered the intracellular cAMP level of spermatozoa in a concentration-dependent manner suggests that it may block the motility of caprine cauda spermatozoa by interfering the cAMP dependent motility function. The results revealed that the purified protein factor has the potential of sperm motility inhibition and may serve as a vaginal contraceptive. The antibody raised against the MIF-II has the potential for enhancement of forward motility of cauda-spermatozoa. This antibody may thus be useful for solving some of the problems of male infertility due to low sperm motility
The Effect of Anandamide on Uterine Nitric Oxide Synthase Activity Depends on the Presence of the Blastocyst
Nitric oxide production, catalyzed by nitric oxide synthase (NOS), should be strictly regulated to allow embryo implantation. Thus, our first aim was to study NOS activity during peri-implantation in the rat uterus. Day 6 inter-implantation sites showed lower NOS activity (0.19±0.01 pmoles L-citrulline mg prot−1 h−1) compared to days 4 (0.34±0.03) and 5 (0.35±0.02) of pregnancy and to day 6 implantation sites (0.33±0.01). This regulation was not observed in pseudopregnancy. Both dormant and active blastocysts maintained NOS activity at similar levels. Anandamide (AEA), an endocannabinoid, binds to cannabinoid receptors type 1 (CB1) and type 2 (CB2), and high concentrations are toxic for implantation and embryo development. Previously, we observed that AEA synthesis presents an inverted pattern compared to NOS activity described here. We adopted a pharmacological approach using AEA, URB-597 (a selective inhibitor of fatty acid amide hydrolase, the enzyme that degrades AEA) and receptor selective antagonists to investigate the effect of AEA on uterine NOS activity in vitro in rat models of implantation. While AEA (0.70±0.02 vs 0.40±0.04) and URB-597 (1.08±0.09 vs 0.83±0.06) inhibited NOS activity in the absence of a blastocyst (pseudopregnancy) through CB2 receptors, AEA did not modulate NOS on day 5 pregnant uterus. Once implantation begins, URB-597 decreased NOS activity on day 6 implantation sites via CB1 receptors (0.25±0.04 vs 0.40±0.05). While a CB1 antagonist augmented NOS activity on day 6 inter-implantation sites (0.17±0.02 vs 0.27±0.02), a CB2 antagonist decreased it (0.17±0.02 vs 0.12±0.01). Finally, we described the expression and localization of cannabinoid receptors during implantation. In conclusion, AEA levels close to and at implantation sites seems to modulate NOS activity and thus nitric oxide production, fundamental for implantation, via cannabinoid receptors. This modulation depends on the presence of the blastocyst. These data establish cannabinoid receptors as an interesting target for the treatment of implantation deficiencies
Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition
Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales interact with small-scale aboveground–belowground interactions on plant community heterogeneity. Here, we investigate how cattle (Bos taurus) modify the effects of interactions between yellow meadow ants (Lasius flavus) and European brown hares (Lepus europaeus) on the formation of small-scale heterogeneity in vegetation composition. In the absence of cattle, hares selectively foraged on ant mounds, while under combined grazing by hares and cattle, vertebrate grazing pressure was similar on and off mounds. Ant mounds that were grazed by only hares had a different plant community composition compared to their surroundings: the cover of the grazing-intolerant grass Elytrigia atherica was reduced on ant mounds, whereas the relative cover of the more grazing-tolerant and palatable grass Festuca rubra was enhanced. Combined grazing by hares and cattle, resulted in homogenization of plant community composition on and off ant mounds, with high overall cover of F. rubra. We conclude that hares can respond to local ant–soil–vegetation interactions, because they are small, selective herbivores that make their foraging decisions on a local scale. This results in small-scale plant patches on mounds of yellow meadow ants. In the presence of cattle, which are less selective aboveground herbivores, local plant community patterns triggered by small-scale aboveground–belowground interactions can disappear. Therefore, cattle modify the consequences of aboveground–belowground interactions for small-scale plant community composition
Moving towards a population health approach to the primary prevention of common mental disorders
There is a need for the development of effective universal preventive approaches to the common mental disorders, depression and anxiety, at a population level. Poor diet, physical inactivity and smoking have long been recognized as key contributors to the high prevalence noncommunicable diseases. However, there are now an increasing number of studies suggesting that the same modifiable lifestyle behaviors are also risk factors for common mental disorders. In this paper we point to the emerging data regarding lifestyle risk factors for common mental disorders, with a particular focus on and critique of the newest evidence regarding diet quality. On the basis of this most recent evidence, we consequently argue for the inclusion of depression and anxiety in the ranks of the high prevalence noncommunicable diseases influenced by habitual lifestyle practices. We believe that it is both feasible and timely to begin to develop effective, sustainable, population-level prevention initiatives for the common mental illnesses that build on the established and developing approaches to the noncommunicable somatic diseases.<br /
The Congenital Cataract-Linked G61C Mutation Destabilizes γD-Crystallin and Promotes Non-Native Aggregation
γD-crystallin is one of the major structural proteins in human eye lens. The solubility and stability of γD-crystallin play a crucial role in maintaining the optical properties of the lens during the life span of an individual. Previous study has shown that the inherited mutation G61C results in autosomal dominant congenital cataract. In this research, we studied the effects of the G61C mutation on γD-crystallin structure, stability and aggregation via biophysical methods. CD, intrinsic and extrinsic fluorescence spectroscopy indicated that the G61C mutation did not affect the native structure of γD-crystallin. The stability of γD-crystallin against heat- or GdnHCl-induced denaturation was significantly decreased by the mutation, while no influence was observed on the acid-induced unfolding. The mutation mainly affected the transition from the native state to the intermediate but not that from the intermediate to the unfolded or aggregated states. At high temperatures, both proteins were able to form aggregates, and the aggregation of the mutant was much more serious than the wild type protein at the same temperature. At body temperature and acidic conditions, the mutant was more prone to form amyloid-like fibrils. The aggregation-prone property of the mutant was not altered by the addition of reductive reagent. These results suggested that the decrease in protein stability followed by aggregation-prone property might be the major cause in the hereditary cataract induced by the G61C mutation
- …