21 research outputs found

    Intranasal Peptide-Based FpvA-KLH Conjugate Vaccine Protects Mice From Pseudomonas aeruginosa Acute Murine Pneumonia

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic respiratory infections associated with morbidity and mortality, especially in patients with cystic fibrosis. Vaccination against P. aeruginosa before colonization may be a solution against these infections and improve the quality of life of at-risk patients. To develop a vaccine against P. aeruginosa, we formulated a novel peptide-based P. aeruginosa subunit vaccine based on the extracellular regions of one of its major siderophore receptors, FpvA. We evaluated the effectiveness and immunogenicity of the FpvA peptides conjugated to keyhole limpet hemocyanin (KLH) with the adjuvant curdlan in a murine vaccination and challenge model. Immunization with the FpvA-KLH vaccine decreased the bacterial burden and lung edema after P. aeruginosa challenge. Vaccination with FpvA-KLH lead to antigen-specific IgG and IgM antibodies in sera, and IgA antibodies in lung supernatant. FpvA-KLH immunized mice had an increase in recruitment of CD11b+ dendritic cells as well as resident memory CD4+ T cells in the lungs compared to non-vaccinated challenged mice. Splenocytes isolated from vaccinated animals showed that the FpvA-KLH vaccine with the adjuvant curdlan induces antigen-specific IL-17 production and leads to a Th17 type of immune response. These results indicate that the intranasal FpvA-KLH conjugate vaccine can elicit both mucosal and systemic immune responses. These observations suggest that the intranasal peptide-based FpvA-KLH conjugate vaccine with curdlan is a potential vaccine candidate against P. aeruginosa pneumonia

    Intranasal Acellular Pertussis Vaccine Provides Mucosal Immunity and Protects Mice from Bordetella Pertussis

    Get PDF
    Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation

    Intranasal acellular pertussis vaccine provides mucosal immunity and protects mice from <i>Bordetella pertussis</i>

    Get PDF
    Current acellular pertussis vaccines fall short of optimal protection against the human respiratory pathogen Bordetella pertussis resulting in increased incidence of a previously controlled vaccine- preventable disease. Natural infection is known to induce a protective mucosal immunity. Therefore, in this study, we aimed to use acellular pertussis vaccines to recapitulate these mucosal immune responses. We utilized a murine immunization and challenge model to characterize the efficacy of intranasal immunization (IN) with DTaP vaccine or DTaP vaccine supplemented with curdlan, a known Th1/Th17 promoting adjuvant. Protection from IN delivered DTaP was compared to protection mediated by intraperitoneal injection of DTaP and whole-cell pertussis vaccines. We tracked fluorescently labeled DTaP after immunization and detected that DTaP localized preferentially in the lungs while DTaP with curdlan was predominantly in the nasal turbinates. IN immunization with DTaP, with or without curdlan adjuvant, resulted in anti-B. pertussis and anti-pertussis toxin IgG titers at the same level as intraperitoneally administered DTaP. IN immunization was able to protect against B. pertussis challenge and we observed decreased pulmonary pro-inflammatory cytokines, neutrophil infiltrates in the lung, and bacterial burden in the upper and lower respiratory tract at day 3 post challenge. Furthermore, IN immunization with DTaP triggered mucosal immune responses such as production of B. pertussis-specific IgA, and increased IL-17A. Together, the induction of a mucosal immune response and humoral antibody-mediated protection associated with an IN administered DTaP and curdlan adjuvant warrant further exploration as a pertussis vaccine candidate formulation.Facultad de Ciencias ExactasInstituto de Biotecnologia y Biologia Molecula

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e. a controlling message) compared to no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly-internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared to the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly-internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing: Controlled motivation was associated with more defiance and less long-term behavioral intentions to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    IL-27 Negatively Impacts Immunity Developed Following BCG Administration

    No full text
    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a predominantly respiratory pathogen responsible for over ten million infections and one million deaths last year. Despite it being a primary objective of the World Health Organization (WHO) for several decades to irradicate TB, progress toward this objective has fallen short of the 2020 target to end TB by 2035. Meeting this goal will require advancements in diagnostic tools, education, healthcare access, and treatments and preventatives. Regarding prevention, the primary tool for this strategy is through vaccination. Currently, the only licensed vaccine for protection against TB is the century old bacillus Calmette Guérin (BCG). BCG is predominantly used where TB is endemic, where it is ideally given as near after birth as possible to offer protection. While this vaccine does protect young children against TB and its disseminated forms, its efficacy in older populations is highly variable, suggesting a poor ability to produce long-term immunity. Improving BCG or altogether developing a new, more protective vaccine is thus a logical route to controlling the TB epidemic. Unfortunately, no vaccine candidate to date has been successful. In the present dissertation, we proposed this failure arises from an incomplete appreciation for the unique immune environment of the neonate. Neonatal immunity is distinct from that of older age groups, be it in mice or humans. Therefore, studying vaccine responses in an age-appropriate model of vaccination could provide better representations of protection following immunization. To explore this, we developed a neonatal mouse model of vaccination and in vitro assessment. Following previous observations from our lab, we were interested in the influence of the cytokine interleukin (IL)-27. This cytokine is immunosuppressive and we have previously shown it is elevated in the neonatal period when children are being immunized with BCG. Here, we explored the role of IL-27 in the neonatal period following BCG vaccination using our neonatal mouse models of BCG administration and a mouse unresponsive to IL-27 as a result of deletion in its receptor (IL-27Rα-KO). We observed improved production of IL-12 from neonatal dendritic cells with greater stimulation of CD4+ T cells in the absence of IL-27. Furthermore, we showed where clearance of BCG in vitro and in vivo is improved in the absence of IL-27 signaling. Finally, we observed improved control of Mtb in our IL-27Rα-KO alongside a shift to increased production of inflammatory cytokines in the lungs. We conclude that the studies herein offer substantial support for the important negative contributions of IL-27 during neonatal vaccination and suggest that greater consideration be taken to the unique immune environment during early-life vaccination and the development of vaccines for this age group to better model anticipated responses

    Interleukin-27 impairs BCG antigen clearance and T cell stimulatory potential by neonatal dendritic cells

    No full text
    Bacille Calmette Guérin (BCG) is a live-attenuated vaccine for protection against Mycobacterium tuberculosis. Despite high disease protection in infancy and early childhood, it generates poor long-term protection against pulmonary tuberculosis. We hypothesized that the unique immune profile that includes elevated interleukin (IL)-27, contributes to insufficient protection from routine neonatal BCG administration. Using a novel method to obtain neonatal progenitors, we showed that neonatal bone marrow-derived dendritic cells (BMDCs) increase production of IL-27 following BCG stimulation. To study the effect of IL-27 on BMDCs, we utilized mice deficient for IL-27 receptor-α (KO). We observed greater BCG clearance and elevated IL-12 production in the neonatal KO BMDCs compared to WT. BMDCs from KO neonates in turn stimulated more interferon-γ production from CD4+ T cells isolated from BCG-vaccinated mice than WT counterparts. To further confirm the importance of these findings, C57BL/6 mice were vaccinated as neonates in line with the approach to human vaccination in high TB burden regions. IL-27 levels progressively increased through 5 weeks and were significantly elevated in mice vaccinated with BCG compared to controls. The impact of IL-27 production on clearance of BCG was significant as KO mice cleared BCG from peripheral tissues that persisted in WT mice 5 weeks post-vaccination. These results are the first to highlight the suppressive role of IL-27 on DCs in the neonatal period and the impact on neonatal immune responses to BCG

    Image_1_IL-27 alters inflammatory cytokine expression and limits protective immunity against Mycobacterium tuberculosis in a neonatal BCG vaccination model.tif

    No full text
    BackgroundEfforts to control tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (Mtb), have been hampered by the immense variability in protection from BCG vaccination. While BCG protects young children from some forms of TB disease, long-term protection against pulmonary disease is more limited, suggesting a poor memory response. New vaccines or vaccination strategies are required to have a realistic chance of eliminating TB disease. In TB endemic areas, routine immunization occurs during the neonatal period and as such, we hypothesized that inadequate protective immunity elicited by BCG vaccination could be the result of the unique early-life immune landscape. Interleukin (IL)-27 is a heterodimeric cytokine with immune suppressive activity that is elevated in the neonatal period.ObjectiveWe investigated the impact of IL-27 on regulation of immune responses during neonatal BCG vaccination and protection against Mtb.MethodsHere, we used a novel model of neonatal vaccination and adult aerosol challenge that models the human timeline of vaccine delivery and disease transmission.ResultsOverall, we observed improved control of Mtb in mice unresponsive to IL-27 (IL-27Rα-/-) that was consistent with altered expression patterns of IFN-γ and IL-17 in the lungs. The balance of these cytokines with TNF-α expression may be key to effective bacterial clearance.ConclusionsOur findings suggest the importance of evaluating new vaccines and approaches to combat TB in the neonatal population most likely to receive them as part of global vaccination campaigns. They further indicate that temporal strategies to antagonize IL-27 during early life vaccination may improve protection.</p

    Image_2_IL-27 alters inflammatory cytokine expression and limits protective immunity against Mycobacterium tuberculosis in a neonatal BCG vaccination model.tif

    No full text
    BackgroundEfforts to control tuberculosis (TB), caused by the pathogen Mycobacterium tuberculosis (Mtb), have been hampered by the immense variability in protection from BCG vaccination. While BCG protects young children from some forms of TB disease, long-term protection against pulmonary disease is more limited, suggesting a poor memory response. New vaccines or vaccination strategies are required to have a realistic chance of eliminating TB disease. In TB endemic areas, routine immunization occurs during the neonatal period and as such, we hypothesized that inadequate protective immunity elicited by BCG vaccination could be the result of the unique early-life immune landscape. Interleukin (IL)-27 is a heterodimeric cytokine with immune suppressive activity that is elevated in the neonatal period.ObjectiveWe investigated the impact of IL-27 on regulation of immune responses during neonatal BCG vaccination and protection against Mtb.MethodsHere, we used a novel model of neonatal vaccination and adult aerosol challenge that models the human timeline of vaccine delivery and disease transmission.ResultsOverall, we observed improved control of Mtb in mice unresponsive to IL-27 (IL-27Rα-/-) that was consistent with altered expression patterns of IFN-γ and IL-17 in the lungs. The balance of these cytokines with TNF-α expression may be key to effective bacterial clearance.ConclusionsOur findings suggest the importance of evaluating new vaccines and approaches to combat TB in the neonatal population most likely to receive them as part of global vaccination campaigns. They further indicate that temporal strategies to antagonize IL-27 during early life vaccination may improve protection.</p
    corecore