9,558 research outputs found

    Advanced technology applications for second and third general coal gasification systems

    Get PDF
    The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years

    High-Resolution Analysis of the Efficiency, Heritability, and Editing Outcomes of CRISPR/Cas9-Induced Modifications of NCED4 in Lettuce (Lactuca sativa).

    Get PDF
    CRISPR/Cas9 is a transformative tool for making targeted genetic alterations. In plants, high mutation efficiencies have been reported in primary transformants. However, many of the mutations analyzed were somatic and therefore not heritable. To provide more insights into the efficiency of creating stable homozygous mutants using CRISPR/Cas9, we targeted LsNCED4 (9-cis-EPOXYCAROTENOID DIOXYGENASE4), a gene conditioning thermoinhibition of seed germination in lettuce. Three constructs, each capable of expressing Cas9 and a single gRNA targeting different sites in LsNCED4, were stably transformed into lettuce (Lactuca sativa) cvs. Salinas and Cobham Green. Analysis of 47 primary transformants (T1) and 368 T2 plants by deep amplicon sequencing revealed that 57% of T1 plants contained events at the target site: 28% of plants had germline mutations in one allele indicative of an early editing event (mono-allelic), 8% of plants had germline mutations in both alleles indicative of two early editing events (bi-allelic), and the remaining 21% of plants had multiple low frequency mutations indicative of late events (chimeric plants). Editing efficiency was similar in both genotypes, while the different gRNAs varied in efficiency. Amplicon sequencing of 20 T1 and more than 100 T2 plants for each of the three gRNAs showed that repair outcomes were not random, but reproducible and characteristic for each gRNA. Knockouts of NCED4 resulted in large increases in the maximum temperature for seed germination, with seeds of both cultivars capable of germinating >70% at 37°. Knockouts of NCED4 provide a whole-plant selectable phenotype that has minimal pleiotropic consequences. Targeting NCED4 in a co-editing strategy could therefore be used to enrich for germline-edited events simply by germinating seeds at high temperature

    New atlas of IR solar spectra

    Get PDF
    Over 4500 absorption lines have been marked on the spectra and the corresponding line positions tabulated. The associated absorbing telluric or solar species for more than 90% of these lines have been identified and only a fraction of the unidentified lines have peak absorptions greater than a few percent. The high resolution and the low Sun spectra greatly enhance the sensitivity limits for identification of trace constituents

    NICMOS Imaging of the HR 4796A Circumstellar Disk

    Get PDF
    We report the first near infrared (NIR) imaging of a circumstellar annular disk around the young (~8 Myr), Vega-like star, HR 4796A. NICMOS coronagraph observations at 1.1 and 1.6 microns reveal a ring-like symmetrical structure peaking in reflected intensity 1.05 arcsec +/- 0.02 arcsec (~ 70 AU) from the central A0V star. The ring geometry, with an inclination of 73.1 deg +/- 1.2 deg and a major axis PA of 26.8 deg +/- 0.6 deg, is in good agreement with recent 12.5 and 20.8 micron observations of a truncated disk (Koerner, et al. 1998). The ring is resolved with a characteristic width of less than 0.26 arcsec (17 AU) and appears abruptly truncated at both the inner and outer edges. The region of the disk-plane inward of ~60 AU appears to be relatively free of scattering material. The integrated flux density of the part of the disk that is visible (greater than 0.65 arcsec from the star) is found to be 7.5 +/- 0.5 mJy and 7.4 +/- 1.2 mJy at 1.1 and 1.6 microns, respectively. Correcting for the unseen area of the ring yields total flux densities of 12.8 +/- 1.0 mJy and 12.5 +/- 2.0 mJy, respectively (Vega magnitudes = 12.92 /+- 0.08 and 12.35 +/-0.18). The NIR luminosity ratio is evaluated from these results and ground-based photometry of the star. At these wavelengths Ldisk(lambda)/L*(lambda) = 1.4 +/- 0.2E-3 and 2.4 +/- 0.5E-3, giving reasonable agreement between the stellar flux scattered in the NIR and that which is absorbed in the visible and re-radiated in the thermal infrared. The somewhat red reflectance of the disk at these wavelengths implies mean particle sizes in excess of several microns, larger than typical interstellar grains. The confinement of material to a relatively narrow annular zone implies dynamical constraints on the disk particles by one or more as yet unseen bodies.Comment: 14 pages, 1 figure for associated gif file see: http://nicmosis.as.arizona.edu:8000/AAS99/FIGURE1_HR4796A_ApJL.gif . Accepted 13 January 1999, Astrophyical Journal Letter
    corecore