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Abstract

This paper presents a methodology for conducting probabilistic assessments for
structural integrity applications based on the Monte-Carlo method. This starts
with the definition of the underlying procedure for assessing the failure mecha-
nisms of interest, followed by the statistical modelling of the key input param-
eters, leading to the estimation of desired probabilities. A case-study assessing
a plant component (the tubeplate) for creep-fatigue crack initiation using the
R5 Volume 2/8 procedure was conducted to provide context and demonstrate
the utilities of implementing a probabilistic framework. Ezrpanding on previous
work, this paper highlights the main areas of focus for the proposed probabilis-
tic methodology: probabilistic representation of input parameters, correlations,
treatment of loading uncertainties, conducting post-assessment sensitivity anal-
yses, the extrapolation of assessment location probabilities to component-level
and, thereafter, population-level estimates. Through presenting a case-study im-
plementing the full probabilistic methodology, the aim is to promote wider appli-
cation and acceptance within the international structural integrity community,
and further development of the methodology and constituent methods.

Keywords: Structural integrity, probabilistic, Monte-Carlo, plant

components, creep-fatigue

1. INTRODUCTION

Probabilistic structural integrity has been an active area of development in
recent years, with high temperature applications (e.g. those examining metal
creep failure) being driven by the need for examining uncertainties associated

with in-service components. Historically, numerous codes, standards and pro-
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cedures have been developed to assess in-service components for creep or creep-
fatigue failures [1]. Chief examples are the American ASME III Subsection
NH design code [2], the French RCC-MRx design codes [3], the BS7910 assess-
ment procedure by the British Standards Institution [4] and the R5 procedure
[5] developed by the UK power generation industry, which has been the major
methodology applied to AGR components.

Currently, the use of probabilistic methods has been alluded to in some
structural integrity codes and procedures including the R6 procedure (the low-
temperature counterpart to R5), and the R5 Volume 4/5 (Appendix A7) proce-
dure concerning creep-fatigue crack growth, though the extent of such guidance
remains limited [6]. However, presently no formal advice is available for R5
Volume 2/3, which has recently prompted the creation of Appendix 15 (re-
cently approved by the R5 Panel), which is intended to give some general,
non-prescriptive advice. From a regulatory prospective, in the UK there are
currently no allowances for use of probabilistic methods for nuclear structural
integrity safety cases. As a result, the main proponents for probabilistic imple-
mentation have been from industry and academic stakeholders. The absence of
explicit sanction for the use of probabilistics in nuclear structural assessments is
a curious inconsistency since nuclear safety cases, more broadly, are intrinsically
reliant upon probabilistic concepts. For example, the PSA (probabilistic safety
assessment), ALARP (as low as reasonably practicable) and the dose-frequency

staircase which are probabilistic in nature [7, 8].

Conventionally, the above mentioned codes and procedures describe calcu-
lations which are predominantly deterministic, which most commonly rely on
conservatism to account for uncertainty, and consequently a number of complex
issues are not formally considered [9]. Formally addressing these issues becomes
unavoidable as plant components progress through their life expectancy, and
the focus shifts from not only estimating the residual life whilst ensuring the

highest level of safety, but also arguing for life extension in some cases. As a
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result, the focus shifts towards quantifying failure probabilities, which fall be-
yond the purposes of traditional deterministic approaches, while probabilistic

paradigms are well equipped for such applications.

Limited work has been conducted in the area of probabilistic high tem-
perature structural integrity, a review of which can be found in [9]. Building
on previous work [9, 10, 11, 12], this paper presents a complete, though non-
exhaustive, methodology for the implementation of probabilistic methods at the
various stages of assessing a plant component using well-established structural
integrity codes or procedures. This methodology is intended to be divorced from
any specific code or procedure and can be translated to any structural integrity
application. The proposed methodology implements Monte-Carlo simulations
(MCS) to estimate probabilities related to individual assessment locations. In
essence, a MCS aggregates various sources of input uncertainty through a per-
formance function (i.e. a structural integrity procedural calculation) to estimate
the uncertainty in an output parameter, based on which probability estimates
of interest can be computed. Due consideration is given to various issues: the
statistical treatment of relevant material properties, sampling, inclusion of in-
put parameter correlations, treatment of loading uncertainties and sensitivity
analyses. The final components of the proposed methodology are concerned
with estimating component-level probabilities which, in turn, can be translated

to population-level estimates.

2. METHODOLOGY

2.1. The Probabilistic Approach

The MCS is applicable to complex applications where the inclusion of non-
normal input parameters is needed [13, 14]. Given that the calculations required
as part of most structural integrity procedures (creep-fatigue crack initiation be-
ing a good example) are typically complex, non-linear, multi-staged and may re-

quire numerical approximations (e.g. integration routines), the MCS is deemed
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to be the only viable option for calculating probability estimates. In essence, a
MCS strives to approximate the probability distribution of an output parameter
based on the repeated computations of the input-output function (also called
a performance function) using randomly generated combinations of the input
variables, with the values going into these randomly generated combinations
being sampled from probabilistic representations of the inputs (e.g. probability
distributions). The performance function is defined by the underlying determin-
istic procedure, which for the case-study presented in this paper is prescribed
by the R5 Volume 2/3 assessment procedure. Considering creep-fatigue crack
initiation, a key probabilistic output is the probability of initiation (Pol) at
a specific assessment location. To produce appropriate representations of the
creep-fatigue damage distribution, a suitably large number of Monte-Carlo tri-
als (typically 105> — 107) must be computed. This puts a limitation on the
applicability of MCS for computationally intensive calculations. For such cases
a sampling strategy such as latin-hypercube sampling can aide in reducing the

number of trials needed [15].

Latin-hypercube Sampling (LHS) is based on the principle that for each in-
put parameter the samples going into the MCS must have equal probability. For
instance, if an input parameter distribution is known then samples are deter-
mined by dividing the area under the PDF into portions of equal areas, which
in fact represent equal probabilities of occurrence. This concept is depicted in
Figure 1 for an arbitrary normal distribution. This ensures that even though
there may be a relatively small number of samples, these are truly representative
of the underlying distribution. A detailed account of the LHS strategy can be
found in [16]. This sampling method relies upon all resulting combinations (i.e.
MCS trails) having equal probability which is ensured by choosing the bins (i.e.
the ranges of values) to have equal probability. Therefore, careful definition of

the bins is crucial to the outcome of a MCS using LHS.
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Figure 1: Example showing parameter samples having equal probabilities (5 samples obtained
using the LHS approach) for an arbitrary normal distribution, with the samples being further

apart (i.e. wider bins) towards the tails of the distribution.

2.2. Probabilistic Treatment of Input Parameters

Conventional deterministic calculations fail to make full use of the statistical
information that could be inferred from available data. Scatter in test data may
be attributed to a number of sources including: test procedures and equipment,
data analysis methods and interactions between failure modes [17]. Lognormal
distributions have been commonly adopted to statistically characterise various
material data, especially for models where power laws are used [17, 9]. Further-
more, sampling of discreet data (i.e. histograms) may also be appropriate, for
example, when dealing with uncertainties in loading parameters. Regardless of
the application, for any given input parameter, it is encouraged that full use
of the available data is made by choosing from the following options for input

characterisation:

1. Single value: A parameter is fixed at a value believed to be appropri-
ate (conservative perhaps), which is acceptable when very little data or
understanding is available.

2. Range of values: This entails modelling the range of possible values as a
flat (uniform) PDF. The limits of such a range would be based on experi-

enced judgement and the available data.
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3. Probability distribution: fitting one of many possible distribution types to
the available data and using goodness-of-fit tests (e.g. x?) to decide which
type is best suited. Typically, sample sizes > 15 would be appropriate for
this option [13], while for smaller data sets means and standard deviations
can be calculated. Methods for fitting distributions are typically based on
either the linear regression method [18, 13] or the mazimum likelihood
method [18, 9, 19].

4. Histograms: if no probability distribution is appropriate, then construct-
ing a discreet representation of the available data, in the form of a his-

togram, may be more appropriate.

Sometimes the original data is not available, but a source may quote a mean and
a standard deviation, or a 95% confidence limit. These suffice to define a two
parameter probability distribution (e.g. normal or lognormal). If a parameter
is assumed to follow a lognormal distribution, then its logarithmic value follows
a normal distribution. The mean (u) and standard deviation (ogtq) of the
latter normal distribution can be calculated based on the best estimate (BE)
and lower-bound (LB) values which are commonly quoted in material property

handbooks:

0Std = % logyo (%) (1a)
p = logy, (BE) (1b)

were C'F refers to a confidence factor which depends on the confidence limit

associated with the LB. For example, if the LB is assumed to coincide with
the 95% confidence limit, then C'F is 1.6445 which is obtained by inverting the
normal CDF.

2.3. Correlations between Probabilistic Inputs

The topic of characterising and incorporating correlations between the input
parameters was discussed in detail in [11]. In essence, it was advised that no cor-

relations need considering in the first instance when constructing a probabilistic
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assessment, as conducting sensitivity analysis for an assessment without corre-
lations can be used to narrow down the number of dominant parameters, the
correlation between which might significantly influence the assessment results.
After identifying which inter-parameter correlations would be most important,
the degree of correlation may be based on judgement (e.g. choosing a value that
would yield a conservative result when no relevant data is available), or based on
experimental data. Correlations can be incorporated in an assessment using the
Gaussian copula method [20, 21] to generate multivariate input samples which
follow arbitrary PDFs and correlations. For the case-study the correlation be-
tween creep ductility and deformation was taken to be 54.5% (for more details

on this specific correlation see [11]).

2.4. Sensitivity Analysis

Within the context of this work, sensitivity is a measure of the uncertainty in
the probabilistic output (e.g. creep-fatigue damage) introduced by the various
input conditions. In this work, sensitivity analysis was subdivided into two

types of analyses determined by the subject input conditions:

1. Stochastic input parameters: e.g. those discussed in Sections 2.2. There
exists various approaches to quantitatively measure the sensitivity of an
output due to input parameter uncertainties [22, 23, 17], and four such
approaches are summarised in [9].

2. Modelling uncertainties; these arise from the existence of competing as-
sumptions and phenomenological representations of the failure mechanism
(e.g. having various models to represent creep ductility, damage or de-
formation as functions of temperature and stress). These would be cate-
gorised as epistemic uncertainties, which arise from an initial lack of knowl-
edge as to which models better represent the failure mechanisms. Assess-
ing which model yields the better representation can only be done com-
paratively and with respect to experimental or inspection data. However,

when constructing a probability assessment, the knowledge of whether the
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output results are at all sensitive to which model used can be quite valu-
able. In which case, a purely comparative analysis contrasting the results

obtained from using different models is initially sufficient.

The first category of input conditions typically considers uncertainties which are
aleatory (i.e. random) in nature, whilst the latter type examines the sensitivity
toward epistemic (i.e. systematic) uncertainties. Examples of implementing the
above types of SA with reference to the tubeplate case-study are presented in

Section 3.2.3.

2.5. Probabilities for Individual Assessment Locations

Given the results of a MCS for a single assessment location, probability es-
timates can be calculated based on a failure criterion that is prescribed by an
assessment procedure. For instance, given a creep-fatigue crack initiation assess-
ment, the probability of initiation is calculated as the probability of incurring a

total damage greater than unity:
Pol = P(Dr > 1) (2)

A probabilistic creep-fatigue calculation yields the total damage (Dr) as an
uncertain output and the Pol can be estimated by calculating the fraction of
the MCS trials which result in initiation given the failure criterion D > 1, thus

giving Pol = %X, where m is the number of initiations. Ultimately this is the

N
preferred approach but requires a suitably large number of trials to capture the
Pol within a decent resolution. The error associated with this Pol estimate
can be estimated by considering that the number of crack failures (m) follows

a binomial distribution [24]:

_ /V(m) \/NPoI(1—Pol) [1— Pol
~ E(m) NPol -V NPoI ®)

where € is the coefficient of variance, while V(m) and E(m) are the variance

and mean of m respectively.
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2.6. Component-Level Probability

Determining which assessment points are most likely to initiate first is cru-
cial, but estimating a component-level probability of initiation (Polc) might
be more consequential. It is assumed here that a Polo is interpreted as the
probability of a shallow crack initiating anywhere within a component by the
end of a predefined service history. Logically, this is greater than its equivalent
for individual assessment points. A simple, and conservative, assumption is to
assume that all assessment locations are completely independent of each other,

in which case Polc can be calculated using [24]:

Ar
Polc =1- [[(1 - Pol.) (4)

a=1
where Pol, is associated with an assessment point a and A7 is the total number
of assessment locations. In reality, for high reliability components this will be
quite conservative as complete independence is not realistic. This considera-
tion is especially important when correlations between the assessment locations
(arising from both loading conditions and material properties) are crucial in
estimating the overall initiation probability of a whole component. A similar
argument can be made when a population of components (made form the same
material and/or part of the same plant) are considered, as the probability es-
timates of components will be correlated, and these correlations are important

for estimating population-level failures.

Accordingly, a more realistic estimate can be obtained by tracking all as-
sessment locations in parallel as the component history is simulated through
time. As a result, Polc is simply calculated as the fraction of the MCS trials
which have led to at least one crack initiation across the whole component. In
essence, this is a weak-link argument, which implies that a single point of failure
(crack initiation in the case-study) is considered to mean failure of the entire
component. What transpires from such analysis is that the Polx is dominated

by the initiation of a small number of assessment points, which are usually the
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points with the highest Pols. As a result, a joint probability of initiation on
the component-level (Polj¢) can be estimated by tracking the dominant assess-
ment locations. However, following this approach, which attempts to account
for the interdependence between assessment locations, poses an issue: the non-
dominant assessment locations (of which there might be a larger number then
the dominant ones) need to be considered. These are the assessment locations
which did not yield a quantifiable Pol given the resolution of the MCS. For
example, if a MCS uses 1000 trials, non of which lead to initiation for a spe-
cific assessment location, the probability is not zero but rather smaller than the
minimum Pol of 1073 that this example MCS would be able to estimate. In
practice, however, there maybe situations where the number of trials is taken
to the limit of computational power available, in which case being able to esti-
mate such a small Pol becomes challenging. To address this issue the following

strategy is proposed:

1. Firstly, if an assessment yields zero failures by the end of the simulation,
then it would be sensible, and conservative, to assume that at least one
MCS trial leads to initiation (even though the results suggest otherwise)
and therefore the Pol would have a default minimum of 1/N.

2. Secondly, to incorporate this assumption in the Polx estimate, Eq 4 can
be rewritten to separate the terms associated with the dominant from the

non-dominant assessment locations:

BT C'T
Polc =1~ [[(1 = Pol,) [](1 - Pol) (5)
b=1 c=1

where Br and Cr refer to the numbers of dominant and non-dominant
assessment locations respectively, the sum of which is Ap. It is usually
the case that Br < Crp.

3. The product to the left (dominant terms) is estimated based on the weak-
link argument put forward above, while the latter product is estimated

based on assuming complete independence of the non-dominant terms:

Polc =1—(1— POIJC)(l - %)CT (6)

10
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2.7. Population-Level Estimates

A further metric which might be of interest is the number of components
predicted to have at least one crack initiation given a population of such plant
components, Nrc. A possible assumption may be that all components have the
same Polc, which would imply that they all have the same material properties
and have experienced the same severity of loading. Nevertheless, in practice that
is rarely the case, and if the Pol¢ is estimated for a single component which is
considered bounding, then the estimated number of components having at least
one crack (Noe¢) would be conservative. It must be clarified that this estimation

is uncertain rather than exact, as it follows a binomial distribution:

Nece
Polp =
F <NTC

>PoI§VCC(1 — Pol,)Nre~Nee (7)
where Polp is the probability density of observing Noc occurrences in the
Nrc population. If this approach is too conservative, then component specific
assessments can be conducted (i.e. estimating Pols for a number of identical
components separately), but is inevitably onerous. As a result, if the compo-
nents have differences, then the discussion becomes the same as for a single
component with multiple assessment locations (see Section 2.6). A considera-
tion that must be addressed in such case is whether the probability of at least
one component developing a crack becomes dominated by the components with
smaller individual Pols, which would be the case if their numerical prepon-
derance is sufficient. This is analogous to the discussion around Eq 5, as the
product related to the non-dominant components becomes large due to their
prevalence (i.e. Br << Cr, but with reference to components rather than

assessment locations).

2.8. Computational Deployment

Probabilistic assessments as described in this work are suited to implemen-
tation using general-purpose, high-level coding languages including Python, R
and MATLAB, the latter of which was used. Various techniques that are com-

mon practice within these languages are suited for the application at hand. For

11
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example, vectorisation is an efficient strategy which allows for the increase of
number of trials without proportional increase in execution time. Using vectori-
sation, all trials are progressed through the simulated history simultaneously,
which makes it slightly time consuming because some trials are computationally
quicker than others. This is regarded as a small sacrifice given the improved
efficiently relative to sequential calculations, and could be resolved with more
complex algorithms. Moreover, there are three further attributes make these
languages ideal. Firstly, they have numerous statistical libraries which have
been thoroughly validated and in the public domain for years. Secondly, they
provide a plethora of data visualisation tools, which are essential in conducting,
reporting, presenting and independently verifying probabilistic assessments. Fi-
nally, they provide options for conducting parallel computations, which can be
essential. Parallel computations can be done using CPU or GPU hardware,
and the former was used in this work primarily for simplicity. However, when
moving towards assessing multiple assessment locations with large MCS trials
each (> 10%) in parallel, then using a GPU (which is ideal for large array ma-

nipulations) may be more appropriate.

3. CASE-STUDY: THE TUBEPLATE COMPONENT

3.1. Background

This case-study was conducted to demonstrate the implementation of the
probabilistic methodology presented in Section 2. The object of this case-study
is a tubeplate (TP) boiler plant component which was assessed for creep-fatigue
crack initiation. The TP is a cylindrical component which has 37 tubeholes, an
FE representation of which is shown in Figure 2. Figure 3 shows a hysteresis
cycle representing a typical loading cycle, where the start-of-dwell stress (o,
point B) is taken to be at an intermediate position in the hysteresis cycle, which
is typical for a point near the surface of a tube bore. Point B is dictated by

steady operation (i.e. power-producing) which can induce large temperature

12
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differences between tubeholes, which result in large stress gradients, thus driv-
ing creep-fatigue damage. The start-up transient (SU, Point A in Figure 3) is
characterised by a compressive stress state whilst the reactor-trip (RT, Point C)
typically induces a tensile stress on the surface of a tubehole [10]. The simulated
history included 170 RT-SU loading cycles spanning a 30 year period. In total,
this included approximately 19,000 steady-operation (SO) events, each of 100

hours or less.

All input parameters deemed important were treated probabilistically and
are summarised in Table 1. The TP is manufactured from 316H stainless steel
forging, and the variabilities (i.e. data scatter) of key material properties were
treated probabilistically using normal and lognormal distributions as discussed
towards the end of Section 2.2. Loading uncertainties were also treated prob-
abilistically, and this topic was examined in detail as part of related work. A
more detailed account of the methods and results involved in predicting stresses
(050, osuy and orr) and metal temperatures (Tso, Tsy and Trr) based on
historic plant data for the tubeplate can be found in [25, 10]. Thereafter, key
results obtained from the probabilistic creep-fatigue assessment are presented
in Section 3.2, including the Pols of individual tubeholes (which constitute the
37 assessment points located on the TP), and an estimate for a component-level
probability Pols. The latter was then used to infer the numbers of tubeplates
within a plant population which, according to the probabilistic assessment, are
expected to have at least one instance of creep-fatigue initiation on any tubehole

surface.

For this case-study, the performance function is prescribed by the R5 Volume
2/3 procedure, which defines the underlying deterministic set of calculations
which map a plethora of material and loading input parameters onto the desired
output (in this case creep-fatigue damage after a predefined period of in-service
operation). Providing a detailed account of the underlying assessment proce-

dure is beyond the purposes of this paper, however interested readers should

13
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Table 1: Summary of the input parameters that were treated stochastically in the probabilis-
tic R5 Vol 2/3 assessment of the TP component [29]. Material properties are temperature
dependent, and the quoted values are given at 550°C' for reference. For lognormal parameters,

the medians and coefficients of variation (CoV') are for the log;y(x) transformation of each

parameter.

temperatures (Tsy & Trr)

Probabilistic Median
Parameter Description Units
representation (CoV)
Young’s modulus (F) GPa Normal 158 (0.063)
Proof stress (Sy) MPa Normal 162 (26)
Constant in the Ramberg-
M Pa Normal 1648 (210)
Osgood expression (A)
Coefficient of thermal
56 x107° Normal 20 (0.0359)
expansion (a)
Creep ductility (ey) mm/mm Lognormal 1.029 (0.29)
Creep strain rate (£¢) 1/hr Lognormal - (0.3805)
Cycles to fatigue failure (Ny) Cycles Lognormal -
Steady-operation stress (o50) MPa Histograms -
Steady-operation metal
°C Histograms -
temperature (Tso)
Start-up & reactor-trip
MPa Histograms -256 & 300
stresses (osy & oRrT)
Start-up & reactor-trip metal
°C Histograms 436 & 363

refer to the R5 documentation [5], whilst [26] provides tutorials on procedure

implementation, and application examples can be found in [7, 9, 16, 27, 28].

3.2. Results and Discussion

3.2.1. Deterministic Damage Results

Conducting deterministic calculations is an initial stage of developing a prob-

abilistic assessment. In this work, a deterministic assessment assumes all input
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Figure 2: Finite element representation of the tubeplate with the 37 tubeholes being the key

assessment locations [10].

Dictated by
steady-operation
“events” and
transients.

C

AN

Dictated by
transients
(reactor-trip or
shutting down).

Dictated by
transients
(start-up).

N

A

Figure 3: Schematic of a typical stress-strain (o-¢) hysteresis cycle for a point located on the
surface of a tubehole going through a reactor-trip to start-up (RT-SU) cycle. Points A and C

are associated with SU and RT transients respectively [10].
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Figure 4: Total damage results of all 37 tubeholes using the deterministic (all parameters
fixed at median values) assessment. The numbers indicate the order of the most damaged

tubeholes from highest to lowest total damage.

parameters are set at their median values. All 37 TP tubeholes were exam-
ined and the deterministic damage results are shown in Figure 4. Whilst all
tubeholes’ damages were less than unity, it is apparent that a number of tube-
holes incurred substantially larger damages than others; tubeholes 2 and 29 had
the most severe damages. For clarity, all assessment results (deterministic and
probabilistic) are associated with a specific point on the surface of each tube-
hole. Therefore, the damages shown in Figure 4 are associated with what are
believed to be the most damaged points on each tubehole. The deterministic
results could perpetuate a misleading belief that assessment locations which do
not incur damages larger than unity will have zero Pol. However, a proba-
bilistic mindset would reject such notion as the deterministic calculations do
not account for the degree of scatter in the inputs as well as the output dam-
age. Accordingly, a small damage does not always translate to a zero Pol.
However, typically it should be expected that the tubeholes which have larger
damages would also be the most probable to initiate. Thus the deterministic
damages give some insight into which tubeholes to prioritise when conducting

assessments, which relates to the discussion on dominant assessment locations.
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3.2.2. Probabilistic Damage Results

For a single assessment point, Figure 5 shows a histogram of the total creep-
fatigue damage obtained from the N number of MCS trials conducted. The
constituents of the total damage are also presented separately to show that
creep dominates the total damage, D, as indicated by the fatigue damage be-

ing comparatively small. Thereafter, the probability of initiation was calculated

. m
as Pol = %,

where m is the number of initiations. The Pol of individual as-
sessment locations can be tracked as the simulated history progresses, which
is depicted in Figure 6. Logically, for some initial period, no initiations occur,
but once initiations start an initial jump would be expected, which is the tread
observed in Figure 6. As discussed later, creep ductility and deformation are
two dominant inputs, and the substantial jumps at the start were attributed to
MCS trials which had fast creep rates and/or small ductilities, as these would
be expected to initiate first. After these early groups of crack initiations, the
subsequent increase in the Pol was gradual which mirrors the progressive accu-
mulation of damage. Convergence was also investigated, with Figure 7 showing
an example of the convergence of the Pol where the uncertainty can be esti-
mated using Eq 3. This highlights the fact that the estimated Pol is a random
output, as it always has a degree of uncertainty which depends on the number
of trials. For later calculations which involve component and population-level
estimates (e.g. Polc and Ng¢), an analysis can be conducted to assess their
sensitivity towards the uncertainty in the Pol of individual assessment points. A
small number of assessment points usually dominate the component-level prob-
ability and, therefore, it would be expected that estimating the uncertainties
associated with these dominant points would suffice. However, such analysis

was not considered as part of this case-study.

3.2.8. Sensitivity Analysis Results
A number of calculations were conducted to assess the sensitivity of the
output damage results towards various input conditions. Firstly, sensitivity

measures were calculated using the four approaches detailed in [9] to assess the
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Figure 5: Example histograms of probabilistic damage results for a single assessment location.
The criterion for creep-fatigue crack initiation is defined by D7 > 1 which also dictates the

Pol (see Eq. 2). To clarify, there are some data at damages above 1, but too few to be visible

/‘29
2
s
I'r =
150

on these histograms.
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Figure 6: The evolution of the Pol for individual tubeholes during the simulated history (=
170 loading cycles), with each line representing the results from a MCS per tubehole. The

three most probable tubeholes to initiation a crack were 29, 2, and 10 as labelled.

dominance (i.e. relative importance) of all stochastic inputs. The easiest of the

four approaches is the correlations based method, as it can be conducted with
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Figure 7: Convergence of the Pol prediction for an individual assessment location (tubehole
29). The uncertainty (i.e. upper-lower limits associated with a 95% confidence interval) can

be estimated using Eq 3.

the results from a single MCS run by calculating the correlations between the
inputs and the output damage. The simplicity of this method is particularity
useful in the development stage of a probabilistic assessment. The complete
set of quantitative SA results is shown in Figure 8, which indicate that creep
ductility and deformation dominate the probabilistic damage results. This is
consistent with the observations in [9] which looked at a similar but much sim-

pler creep-fatigue assessment.

In this work all input parameters were assumed to follow specific probabil-
ity distribution types (mostly either normal or lognormal). However, the SA
results presented in Figure 8 can provide focus for investigating whether better
statistical representations of some input parameters are likely to yield significant
changes in the results. With creep ductility (e7) being a crucial input, it was
judged important to investigate the effect of using different parameter distribu-
tions. The following is a discussion of the benefit of using a three-parameter
probability distribution which incorporates a minimum value (x) in its prob-
ability density equation. Figure 9 shows two PDF's for ductility, one of which

uses a 3-parameter formulation. The overall effect on the output damage PDF
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was modest, however, using a 3-P lognormal resulted in a lower estimate for
the Pol as highlighted in Table 2. Including a minimum value is logical within
the context of ductility, as it is a positive non-zero quantity and the tail of
the distribution is defined by a minimum value. Given the strong influence of
ductility on the assessment results, it is compelling that including a minimum
value can non-trivially reduce the estimated Pol. Furthermore, these observa-
tions corroborate the results in Figure 8 by indicating that changes in the way
creep ductility is modelled can significantly affect the estimated Pol. Though
this was not investigated, it is expected that the use of a more complex ductility
models incorporating strain-dependency would produce substantial benefits (i.e.

reduction in estimated damage) and is suggested as future work.

As previously discussed, assessing sensitivity can also be done with respect
to the various assumptions involved in the underlying assessment. When con-
ducting a creep damage assessment a judgement needs to be made as to whether
creep strain (though not creep damage) resets at the start of each loading cycle
(i.e. full primary reset, PR) or whether it continuously aggregates throughout
the loading history (full continuous hardening, CH). The former assumption
produces larger damages because more time is spent in the primary creep stage
(which is characterised by faster creep strain rates) as a fraction of the simulated
lifetime. Typically PR is more appropriate when there is significant reverse plas-
ticity at the end of each creep dwell. Most commonly though, a real situation
is somewhere in between, as some cycles might lead to full primary reset due
to large plasticity while others might unload elastically. A model has been re-
cently developed to model the amount of creep strain re-priming as a function
of plastic strain, which is termed the (p model for creep hardening [30], though
it is still under development. Figure 10 shows the probabilistic damage results
for a single tubehole, which shows the effect of using the three available options
for creep hardening. As expected, there is a significant difference between using
PR and CH, with the former producing larger damages, and by extension larger

probabilities of initiation. Comparing the results for PR and the {p model in-
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Table 2: Comparisons between the Pols from two assessments using two-parameter (2-P)
and three-parameter (3-P) configurations of the lognormal distribution for the input creep

ductility ().

Assessment location  Pol (2-P)  Pol (3-P)
Tube 2 1.0x 1073 0.6 x 1073
Tube 29 14%x 1073 1.3x10°3

dicates that assuming PR is not excessively conservative and is closer the (p
situation which is believed to be more realistic. This is a result of significant
reverse plasticity being incurred which has been confirmed separately from the
hysteresis cycle construction. The main conclusions from this analysis are that
the assessment results are sensitive to the choice of hardening assumption and
trialling with the (p model provided valuable insight as to which assumption is
more appropriate. The results indicate that PR is an acceptable assumption for
assessing the TP, while incorporating the (p model would be of limited benefit.
Noteworthy is that the results presented in this work were all obtained using

PR, unless otherwise stated.

50 T T T T T T T 1 1 1 1 1 1
[ Delta-approac
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S 7 [_Ivariance based approach
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£ 30N ¢ Mean contributions =
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Figure 8: Sensitivity measures based on four approaches showing the comparative influence

13 stochastic inputs towards the probabilistic damage results for a single assessment point.
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Figure 9: Shown on the left is a comparison between using 2 and 3 parameter formulations
of the lognormal distribution for modelling the uncertainty in creep ductility (7). The two
distributions have identical medians and lower-bounds. On the right is a zoomed-in view of
the tails of the fitted distributions, highlighting that the 3 parameter lognormal provides more

control over the location of the tail.

3.2.4. Component-Level Results

Based on the methods discussed in Section 2.6, Pols (the probability of
having at least one crack initiation in the whole TP) can be estimated from
the Pols of individual tubeholes. The tubeholes which dominate Pol~ can be
identified by counting the number of times each tubehole led to the first crack
initiation. For the TP, the percentage number of times that each dominant
tubehole led to cracking is shown in Figure 11, which provides a quantitative
measure of dominance. Thereafter, Polc was calculated using Eq 6, which
assumes the independence of the non-dominant assessment locations but uses
Pol ;¢ as the joint probability for the dominant ones. As a result, Eq 6 assumes
partial independence of the assessment locations. An estimate for Polo was also
calculated using Eq. 4, which assumes complete independence of all tubeholes,
and therefore is more conservative. A summary of these results is shown in Table
3. Furthermore, to assess the collective influence of the non-dominant tubeholes
(31 out of 37 tubeholes), Pols was also calculated with and without their

contribution as detailed in Table 3. These results suggest that such influence
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Figure 10: Comparison between probabilistic results using three assumptions for creep hard-

ening.

is rather subtle. Finally, the best estimate for Polc was 0.19% which accounts

for all tubeholes and assumes partial independence.

3.2.5. Population-Level Results

Based on Polc a prediction can be made as to the number of components
which have at least one crack initiation (No¢) given a population of Ny¢ compo-
nents. All components are assumed to be identical and have the same Pols and,
therefore, No¢ follows a binomial distribution prescribed by Eq. 7. Note that
this is not physically indicative for a real plant case, where some components
will be less severely stressed or cycled than others. Therefore, the calculations
herein are for illustration only, and will bound the real situation. Figure 12
shows the binomial PDF and CDF using Polc = 0.19% and Ny = 128 which is
the total number of tubeplates in operation. One way to interpret these results is
by examining an upper-bound value of Neo¢ (e.g. the 95% value), which in this

case is 1. This means that there is approximately a 95% probability of Noo < 1.

Taking a different perspective, what can also be of interest is the approxi-

mation of an acceptable Polx by the end of service given a target upper-bound

23



0 J oy U WD+

OO CUTUIUTOTO A S B R EEDSDEDEWDWOWWWWWWWIONRNONNRNNNNOONN R R R R R
R WNRPOWVWOJONNEWNRFR,OWOW®OJAUEWNRFRFOWO®OJANUTEWNROW®O-JIOUD®WNRLOWWJOU S WNR O L

440

445

450

Table 3: Comparison of estimates of the component-level probability of initiation (Polc)
based on assuming complete versus partial independence of the individual tubeholes, and

based on considering the dominant tubeholes only (see Figure 11) versus all tubeholes.

Polc in %
Independence
Dominant tubeholes only Including all tubeholes
Complete 0.19 0.22
Partial 0.16 0.19

Nece, which can be demanded by safety regulations. For the TP, to ensure
a probability of at least 95% that Ng¢ is zero, then Polos < 0.04% must be
achieved, while for Noc = 1 a range of 0.04% < Polc < 0.26% must be demon-
strated for the same minimum confidence level. These ranges follow from the
binomial distribution being discreet in nature, which only provides probabilities
for integer values of No¢ and, as there exists a range of Polx values that would
yield the same upper-bound Nee. Hence these ranges ensure a confidence limit

of 95% or larger.

4. CONCLUSION

This paper introduces a complete methodology which can be translated to
any structural integrity application, whilst giving a high-temperature creep-
fatigue example for contextualisation and demonstrating the implementation
of the methodology. Systematic probabilistic methods and concepts were in-
corporated, the most prominent of which are: Monte-Carlo Simulations, latin-
hypercube sampling, sensitivity analysis, correlations between input parame-
ters, treatment of loading uncertainties and the extrapolation to component

and population-level estimates.

Probabilistics must not be considered an alternative to conventional deter-
ministic calculations, but rather a completely different mindset which embraces

complexity and uncertainty rather than simplifying them in favour of conser-
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Figure 11: A breakdown of the percentage number of times each of the dominant tubeholes

led to the first crack initiation across the whole tubeplate.
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Figure 12: Binomial distribution (see Eq. 7) for a population of components of Nyp¢o = 128
given that Polc = 0.19%. The solid line (PDF) is the probability of having exactly the stated
number of cracked tubeplates across the fleet of 128. The dashed line (CDF) represents the
probability of having No¢ cracked tubeplates or fewer. The dotted vertical line denotes the
95% upper limit, highlighting the upper-bound value for No¢, which in this case indicates
that there is a 95% probability of there existing 1 cracked tubeplate or less.
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vatism. Accordingly, probabilistics can be considered an evolution of tradi-
tional deterministic approaches, which have emerged from the reconciliation
of statistical methods and physics of failure modelling, aided by advances in
computational tools and hardware. In general, for implementing probabilistic
methodologies within structural integrity there are three facets of knowledge

required [12]:

1. Understanding of the underlying physics of failure and data for the statis-
tical characterisation of material property inputs.

2. Operational data for components of interest.

3. A general appreciation of probabilistic approaches and statistical concepts
and the ability to relate these to a physical problem of interest.

4. Computational experience in producing efficient algorithms.

These sources of knowledge can be aggregated into probability estimates of hi-
erarchical elements: individual assessment points within a component, a whole
component and a population of components. Consequently, the implementation
of probabilistic approaches is intended to provide more confidence in assessment
procedures and results, and their utilities are especially pronounced for plant
applications, where complexity is translatable to statistical and probabilistic

paradigms.

The vision for this work is to bridge the gap between the knowledge of
probabilistic methods and the general structural integrity community. Moving
forward, substantial thought must be devoted to bringing practitioners up to a
baseline level of understanding and awareness of probabilistic and statistical con-
cepts. This will also have the benefit of continuously developing the prospective
probabilistic structural integrity methodology through feedback on use, valida-
tion and independent verification. By promoting further implementation and
engagement, it is envisaged that the methodology will mature and emerge to
be more extensive as well as coherent, which in turn will aid further acceptance

within a wide range of structural integrity fields and, therefore, promoting the
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emergence of a unified probabilistic framework for structural integrity.
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