## NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

## SIRS NAS8-33846.

## spectra research systems SOUTHEASTERN OPERATIONS HUNTSVMLE ALABAMA 35605 <br> 500 WYNN DRINE SUITE 319 (205) $830-0375$


(HASA-CR-161771) ADVAMCED TBCBMOLOGY
spectra research systems
SOUTHEASTERN OPERATIONS
500 WYNN DRIVE. SUITE 319. hUNTSVILLE. ALABAMA S5e0s
(205) 8300375

# ADVANCED TECHHOLOGY APPLICATIONS FOR SECOND AND THIRD GENFRATION COAL GASIFICATION SYSTEMS 

JULY 10, 1980<br>SRS/SE TR80-11

Rodney Bradford
John D. Hyde
C. Wendell Mead

NASA CONTRACT: NAS8-33846
COR: Mr. Lott W. Brantley

## I. INTRODUCTION

This final report is submitted to the George C. Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA), by Spectra Research Systems, 500 Wynn Drive, Suite 319, Huntsville, AL 35805. It provides a synopsis, in briefing chart format, of the results of a four-month study contract (NAS8-33846) conducted under the technical guidance of Mr . Lott W. Brantley (MSFC) as part of the NASA Headquarters - Energy Systems Division's Energy Technology Program.

The major objectives of this effort were:

- the establishment of a technical and programmatic data base on second and third generation coal gaisifier systems,
o analysis of requirements for equipment and componentimprovements and advanced technology applications,
o and the formulation of recommendations for technology development.
Additional activities accomplished included the pianning and definition of approaches for detailed investigations and assessments of commercial coal gasification plant startup and operational experience and supporting technology development.


## TABLE OF CONTENTS

SECTIONPAGE
I. Introduction ..... 1
II. Historical Background of Coal Conversion ..... 2
III. World War II Synthetic Rubber Effort ..... 14
IV. Programmatic Status ..... 16
V. Selected Coal Gasification Pil-さ Plant Performance Histories ..... 37
VI. Selected Commercial Coal Gasification Plant Operational Histories ..... 66
VII. Critical Technology Areas ..... 77
VIII. Coal Gasification Technology Developnent Requirements ..... 93
IX. DOE Fossil Energy Coal Gasification Advanced Research and Supporting Technology Development ..... 114
X. Summary of Universities Participating in Coal Research (DOE Agreement as of January 1. 1980) ..... 167
XI. West German Coal Gasification Research and Development ..... 170
XII. Problems Facing the Coal Conversion Industry ..... 172
XIII. Assessment of Coal Conversion Industry Capability ..... 176
XIV. Observations and Summary ..... 179
XV. References ..... 183
XVI. Appendix - Process Descriptions/Configurations

## I. INTRODUCTION

This final report is submitted to the George C. Marshall Space Flight Center (MSFC), National Aeronautics and Space Administration (NASA), by Spectra Research Systems, 500 Wynn Drive, Suite 319, Huntsville, AL 35805. It provides a synopsis, in briefing chart format, of the results of a four-month study contract (NAS8-33846) conducted under the technical guidance of Mr. Lott W. Brantley (MSFC) as part of the NASA Headquarters - Energy Systems Division's Energy Technology Program.

The major objectives of this effort were:
o the establishment of a technical and programmatic data base on second and third generation coal gaisifier systems,

- analysis of requirements for equipment and componentimprovements and advanced technology applications,
- and the formulation of recommendations for technology development.
Additional activities accomplished included the planning and definition of approaches for detailed investigations and assessments of commercial coal gasification plant startup and operational experience and supporting technology development.
II. HISTORICAL BACKGROUND OF COAL CONVERSION
- EIRST GENERATION
- PROCESSES DEVELOPED PRIOR TO WWII AND OPERATING COMFERCIALLY
- FIXED BED LURGI/FLUIDIZED BED WINKLER/ENTRAINED FLOW KOPPERS - TOTZEK -
COAL GASIFICATIOM PROCESS DEVELOFMENT CATAGORIES - PROCESSES WHICH INCORPORATE IMPROVED TECHNOLOGY TO IMLREASE CONVERSION
EFFICIENCY/REDUCE CAPITAL COSTS
- MOST HAVE BEEN DEMONSTRATED IN PILOT PLANT OPERATIONS BUT HAVE NOT
OPERATED ON A COMYERCIAL SCALE
- TEXACO/SLAGGING LURGI/HIGAS/U-GAS
IHIRD GEMERALION

$$
\begin{aligned}
& \text { - } \text { INCORPORATE ADVANCED TECHNOLOGY THAT OFFERS SIGNIFICANT ADVANTAGES TO } \\
& \text { IMPROVE PROCESS EFFICIENCY/ECONOMICS } \\
& \text { - } \text { PEQUIRE FURTHER DEVELOPMENT FOR SCALEUP TO PILOT PLANT OPERATION } \\
& \text { - EXXON CATALYTIC/HYDROGASIFICATION/MOLTEN SALT }
\end{aligned}
$$

HISTORICAL BACKGROUND OF COAL COIVERSION

$$
\begin{aligned}
& \text { GASIFICATION } \\
& \text { KNOWN AS EARLY is } 1670 \text { (REVEREND JOHN CLAYTON) THAT GAS COULD BE PRODUCED BY } \\
& \text { heating coal in a retort } \\
& \text { - } 100 \text { Years later manufactuked gas Industry had its beginning in england } \\
& \text { (WILLIAM MURDOCH ILLUMINATED HIS HOME IN 1792) } \\
& \text { LONDON BRIDGE LIT BY COAL GAS IN 1813/WHITE HOUSE in } 1848 \text { (FIRST COAL GAS } \\
& \text { COMPANY IN U. S. STARTED IN BALTIMORE IN 1816) } \\
& \text { CYCLIC CARBURETTED WATFR GAS PROCESS DEVELOPED IN 1875, BUNSEN'S INVENTION } \\
& \text { OF ATMOSPHERIC GAS BURNER IN } 1855 \text { HAD OPENED HEATING MARKET } \\
& \text { - dURING } 19 \mathrm{TH} \text { and } 20 \mathrm{TH} \text { Centuries gas from Coal produced in u. S. AND europe for } \\
& \text { LIGHTING/COOKING/INDUSTRIAL PURPOSED }
\end{aligned}
$$

$$
\begin{aligned}
& \text { the major available fuel }
\end{aligned}
$$


a ANALYSES WILL VARY DEPENDING ON TYPE OF COAL AND OPERATING CONDITIONS.
$\ddot{i}$
PROPERTIES OF COAL-DERIVED GASES "PRODUCER GAS" HAS RELATIVELY LOW HEATING VALUE ( $100-160$ BTU/SCF) AND IS
PRODUCED BY COMPLETELY CONVERTING COAL OR COKF TO GAS BY CONTINOUS REACTION
WITH STEAM AND AIR
DEVELOPMENT OF CYCLIC WATFE-GAS PROCESS PERMITTED CONTINUOUS PRODUCTION OF
HIGHER THERMAL CONTENT GAS ( $300-350$ BTU/SCF)

- ADDING OIL TO REACTOR INCREASES HEAT CONTENT (500-550 BTU/SCF)
- THIS WAS STANDARD DISTRIBUTED GAS FOR USE IN HOMES/COMMERCIAL ESTABLISHME
- FIRST SUCCESSFUL SYNTHETIC AMMONIA PLANT BUILT BY TVA IN MUSCLE SHOALS, A

|  | $\begin{gathered} \text { COKE OVEN } \\ \text { GAS } \end{gathered}$ | $\begin{gathered} \text { PRODUCER } \\ \text { GAS } \end{gathered}$ | WATER GAS | CARBURETTED WATER GAS | SYNTHETIC <br> NATURAL GAS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| REACTANT SYSTEM | THERMAL | AIR PLUS | STEAM(CYCLIC | STEAM(CYCLIC | OXYGEN FLUS STEAM AT |
|  | HEATING | STEAM | WITH AIR) | WITH AIR PLUS OIL) | PRESSURE |
| $\text { AJALYSIS, VOLUMEs }{ }^{a}$ |  |  |  |  | 0.1 |
| CARBON MONOXIDE, CO | 6.8 47.3 | 27.0 14.0 | 42.8 49.9 | 33.4 34.6 | 2.5 |
| HYDROGEN, ${ }^{\text {M }}$ ( METHANE, CH4 | 47.3 33.9 | 14.0 3.0 | 49.9 0.5 | 34.6 10.4 | 94.2 |
| METHANE, $\mathrm{CH}_{4} \mathrm{CARBON}$ DIOXIDE, $\mathrm{CO}_{2}$ | 33.9 2.2 | 3.0 4.5 | 3.5 3.0 | 10.9 7 | 0.4 |
| NITROGEN, $\mathrm{N}_{2}$ | 6.0 | 50.9 | 3.3 | 7.9 | 2.8 |
| OTHER ${ }^{\text {b }}$ | 3.8 | 0.5 | 0.5 | 9.8 |  |
| FUEL VALUE, BTU/FT ${ }^{3}$ | 590 | 150 | 308 | 536 | 962 |
| USES | FUEL CHEMICALS | FUEL | FUEL SYNTHESIS CHEMICALS | FUEL | FUEL <br> SYITHESIS CHEMICALS | OTHER COMPONENTS INCLUDE HYDROCARBON GASES, HYDROGEN SULFIDE,

IN
(YIGNI
GASIFICATION
HISTORICAL BACKGROUND OF COAL CONVERSION (COHT'D)
TO CONSTRUCTION OF AIR-BLOWN
GASIFIER IN

$$
\text { GASIFIER IN } 1926 \text { AT LEUNA, GERMANY }
$$

$$
\text { THREE UNITS CONVERTED TO USE OXYGEN IN } 1933
$$ ON PILOT PLANT WORK INITIATED IN 1938

$$
6 \text { PLANTS }
$$

LOVAKIA, YYGOSLAVIA, TURKEY,
USE IN COKE OVENS WAS AVAILABLE

$$
\text { - PILOT PLANT BUILT IN } 1930 \text { LED TO FIRST INDON LIGNITE IN TWO GASIFIERS) }
$$

$$
13 \text { PLANTS UTILIZING } 55 \text { GASIFIERS BUILT BY } 1966 \text { IN EUROPE. }
$$

MANUFACTURE

$$
\text { IN } 1936 \text { ( } 1 \text { MILLION SCF/DAY OF TOWN GAS PROH LIGNITE IN TWO GASIFLELS }
$$

1950-1954 PILOT PLANT AT HOLTEN USFD TO DEVELOP TECHNIQUES TO HANDLE ELTURLNE

$$
\text { (INCLUDING CAXING) COALS TO PRODUCE SYNTHESIS GAS IN ADDITIUN IV } 1966 \text { IN EUROPE, ENGLAND, AUSTRALIA. }
$$

FOR
PLANT FLEL HEINRICH KOPPERS OF GERMANY ANNOUNCED IN 1942 THE ROPPERS-TOTZER PROCESS BAED

> FIMLAND,

PRODUCTION OF LIQUIDS FROM COAL BY DIRECT HYDROGENATION HAD ITS EARLY DFVELOPYE:U
TARS
HIGH-PRESSURE REACTOP.

- PILOT PLANT OPERATIUN BEGUN IN 1921 WHICH CONVERTED 30-50: OF THE COAL TO OIL AT $H_{2}$ PRESSURES OF 1500-3000 PSI, 750-900 ${ }^{\circ} \mathrm{F}$ PROCESS IMPROVED IN 1924 BY INTRODUCTION OF CATALYSTS IN FORM OF SULFIDES BND OXIDES (OF MOLYBDENUM, TLNGSTEN, COBALT, IRON) AND SEPARATION INTO TWO STEPS (PARTIAL HYDROGENATION IN LIQUID PHASE PRODUCED HEAVY OIL, VOLATILE PRODUCTS THEN CATALYTICALLY TREATED IN VAPOR PHASE TO PRODUCE GASOLINE ANR OIHER LIGHT
1926
 IN GERMANY (HYDROGASIFICATION FIRST REPORTED BY BRITISH GAS COUNCIL IN 1937 ) BERGIUS DEVELOPED PROCESS TO INTRODUCE PUMPABLE GROUND COAL AND OIL PASTE I... PRODUCTION OF LIQUIDS FROM COAL BY DIRECT HYDROGENATION HAD ITS EARLY DFVELOPYE:X: IN GERMANY (HYDROGASIFICATION FIRST REPORTED BY BRITISH GAS COUNCIL IN 1937 ) BERGIUS DEVELOPED PROCESS TO INTRODUCE OUMPABLE GROUND COAL AND OIL PASTE I\& PORM OF SULPIDES IND "FOR THE LAST 34 YEARS THE DIRECT HYDROGENATION (BERGIUS) PROCESS HAS NOT BEEN USED
AND IT IS QUESTIONABLE WHETRER THE TECHNICAL KNON HON STILL EXISTS TO UTILIRE TRE
PROCESS WITHOUT REINVENTING MANY OF THE DETAILS OF ITS OPERATICN' NOTE: THE LIFE OF PRESSURE LET-DOWN VALVES FOR THE BERGIUS PLANTS OPERATED IN GERMANY DURING WAR II WAS IN THE RANGE OF ONE TO 60 DAYS. CURRENT U.S. PILOT PLANT EXPERIENCE INDICATES A PROBABLE MEAN OPERATING LIFE FOR THE INTERNALS OF LET-DENN VALVES OF APPROXIMATELY 45 DAYS AND FOR VALVE BODIES OF ONE YEAR REPORTED LIFE IS ONLY 4,000 HOURS. THE RESULT IS A REQUIREMENT TO INSTALL MULTIPLE LET-DOWN VALVES IN PARELLEL, EACH ACCOHPANIED BY CN WHEN REPLACING VALVE AND CONTROI, SYSTEMS TO ASSURE CONTINUITY OF PI IS THAT, FOR PERSONNEL PROTECTION BODIES IND INTERNALS. A FURTHEK COMP THE VALVES ARE PREFERABLY CAREFULLY FLUSBED REASONS, THE LIQUIDS FLOWING THRO MHINTENANCE PERSONNEL. THE OVERALL RESULTS ARE PRIOR TO CLEARANCE FOR ACCESS BY MAINING COSTS AND A POTENTIAL NEGATIVE EPPECT ON PLANT AVAILABILITY.
IIQUEFACTION
 Shet down at start of ww II)
u.s. blereau of mines conducted small-scale hydrogenation experiments during 1930's
- 100 lb; day continuous feed pilot plant constructed in 1937
dering 1947-1953 200 bbl/day demonstration plant constructed and operated at
- considerable mechanical problems, e.g. erosion, encountered but demo considered to be success (variety coal feedstock used) activity not continued due to sufficient crude oil reserves INDIRECT FISCHER-TROPSCH PROCESS FIRST ANNOUNCSD IN GERGUNY IN 1923 COMBINED H ${ }_{2}$ AND CO at 1500 PSI, $750^{\circ} \mathrm{F}$ OVER NON alvali CATALYST pilot plant operational in 1932 and 20 bbl/day produced in 1933 mine plants operational in germany by 1939 productng 16.000 bBl/ Catalyst, atmospheric - 309 pSI) by 1945 Germany produced 36e of its total usage - 75,000 bBL/DAY FROM bergius process - 16,000 bBL/DAY P-T fischer-tropsch plants built in other countries (256T any LE6T) 3JNvad JAPAN (3 PLANTS 1939-1943) manchuria (1939)
HISTORICAL BACKGROLHD OF COAL CONVERSIOH (CONT 'D)
HISTOUIAL BACKGROUED OF COAL COMVERSION (CO:! 'D)
LIQUEFACTION

- CONSOLIDATION COAL CO. CONDUCTED INDEPENDENT RESEARCH ON THE MANUFACTURE OF
gasoline and light hydrocarbons from coal during 1950-1962 period
PROCESS USED COAL-DERIVED SOLVENT WHICH SERVED AS HYDROGEN DONOR
OFFICE OF COAL RESEARCH SPONSORED 20 TON/DAY PILOT PLANT CONSTRUCTION AT CRESAP, W. VA.
OPERATIONS LIMITED BECAUSE OF RECURRING EQUIPMENT FAILURES.
- ANGLO TRANSVAAL CONSOLIDATED INVESTMENT COMPANY ACQUIRED THE S. A. RIGHTS TO F-T PROCESS IN 1935 AND PILOT PLANT TESTING CONDUCTED UNTIL OUTBREAK OF WW II IN 1939 U. S. ENGINEERS WEPE FREQUENT VISITORS TO GERMANY DURING 1930'S AND U. S. (AMERICAN KELLOGG, LATE 1940'S) VARIATION OF F-T PROCESS DEVELOPED USING A MOVING POWDERED CATALYST RATHER THAN PELLITIZED CATALYST DEVELOPED BY GERMANS F-T PLANT STARTED OPERATIONS AT SASOLBURG, S.A. IN 1955 BY S.A. COAL, OIL, AND GAS CORP. (SASOL) USING PRESSURIZED LURGI GASIFIERS TO PRODUCE SYNTHESIS GAS - SASOL I DESIGNED TO PRODUCE APPROX. 5000 bBL/DAY OF GASOLINE AND HEAVIER PETROLEUM FRACTIONS FROM SUBBITUMINOUS COAL ( 5 MILLION TONS/YR.)
PRODUCTION CO.STS NOW AVERAGE APPROX. $\$ 17 /$ BBL (CAPITAL INVESTMENT $\$ 450$ MILLION) LOW PRICE HELPED BY Abundance of ChEAP LABOR AÑ̃ LOW COST COAL
SASOL I CONSTRUCTION SUPERVISED BY KELLOGG INTERNATIONAL CORP. AND MOST EQUIPMEAT CAME FROM THE U. S. AND GERMANY
SOUTH APRICA has LOW GRADE COAL RESERVES OF 25 BILLION TONS (NO OIL hAS EVER BEEN FOUND)
- CURRENTLY 808 OF COUNTRIES ENERGY NEEDS MET BY COAL (VERSUS 108 OR LESS IN U. S.)
- SASOL I, II, III WILL PROVIDE A TOTAL OF 112,000 BBL/DAY OR ABOUT HALE OF CCUNTRY' E NEEDS (CURRENT PUMP PRICE OF GASOLINE \$2.40/GAL.)
HISTORICAL BACKGROUND OF COAL COHVERSION (COPIT'D)
LIQUEFACTION: OIL FROM COAL IN SOUTH AFRICA
ENOUGH FOR INDUSTRIAL APPLICATION (GERMAN PELLETIZED CATALYST F-T ALSO EMPLOYED) - TCOK "A COUPLE" OF YEARS TO ACHIEVE SUCCESSFUL OPERATION
COIMISSIONING OF FIRST SYNTHESIS UNITS IN SASOL I BEGAN IN 1955 - APPEARED IMMEDIATELY THAT FLUID BED F-T TECHNOLOGY WAS NOT DEVELOPED FAR (-EN - THOK "A couplen Or years To achieve successful operation SASOL I IS A IARGE COMPLEX WHICH IS PRESENTLY THE WORLD'S ONLY FULLY INTEGRATED
COMMERCIAL SYN FUELS FROM COAL PLANT (OIL-FROM-COAL PLANT + REFINERY + FACILITIES
FOR INDUSTRIAL PETROCHEMICAL PRODUCTION)
- GERMAN F-T PROCESS PRODUCES MAINLY HIGHER BOILING POINT MATERIALS (E.G. WAXES,
DIESEL OILS, LIQUEFIED PETROLEUM GAS, CHEMICALS, SOME GASOLINE)
- U. S. F-T PROCESS PRODUCES LOW BOILING POINT MATERIALS (E.G. GASOLINE, CHEMICALS
$\quad$ SUCH AS ALCOHOL, ACETONE) MAJOR SUPPLIER OF INDUSTRIAL GAS VIA A HIGH-PRESSURE PIPELINE TO INDUSTRIAL
 SASOL I PRETAX PROFITS FOR 1978 WERE $\$ 140$ MILLION ON SALES OF $\$ 1$ BILLION (GASOLINE SALES REPRESENTED 78 OF MARKET)
S. A. GOVERNMENT ANNOUNCED IN 1974 THAT IT WOULD BUILD A SECOND COMFLEX SASOL II (RESULT OF ARAB OIL BOYCOTT IN 1973 AND YOM KIPPUR WAR IN 1974) SASOL II TO BE THREE TIMES DESIGN CAPACITY OF SASOL I ( 14 MILLION TONS/YR. COAL CONSUMPTION) EMPLOYS SAME TECHNOLOGY (LURGI GASIFIERS + FLUID BED FT)
CONSTRUCTION INITIATED IN 1976 WITH COMPLETION SCHEDULED FOR 1980
HISTORICAL BACKGROLND OF COAL COMVERSIOM (CONT'D)
LIOCEFACTION: OIL FROM COAL IN SOUTH AFRICA

> AND THE AGE HAS ARRIVED WHEN SOUTH AFRICA MAY SELL TECHNOLOGY TO THE UNITRD
OBSERVATTONS
> - large reserves of low cost coal
> - scarcity of domestic petroleum reserves
> - abundance of cheap labor
> - GOVERNMENT POLICY
> - S. A. IS BOYCOTTED BY MOST OF OPEC
> - costs or coal construction labor anol
> - estimate of, construction, labor, capital
> estimates of Cost range from $\$ 27$ to $\$ 45$ bbl in U. $S$
> effort is comparable to a $\$ 300$ billion crash program for the consumption its mor the u. s.
II. WORLD WAR II SYNTHETIC RUBBER EFFORT
HORID HAR UL SYMTHEILC RUBBER EFFORT INITIAL COMMITTEE ON SYNTHETIC RUBBER FORMED
RUBBER RESERVE CONMITO SYNTHETIC RUBBER PLANTS RFP FOR CONSTRUCTION OF SYNA CONTRACTS ISSUED TO FOUR IKNUFACTURER TO DESIG CONSTRUCT, AND OPERATE PLANTS first four plants on stream at design capacity of 15,000 TPY EACH
MAJOR RUBBER CONSERVATION PROGRAM OUTLINED
51 PLANTS OPERATING WITH 21,713 EMPLOYEES
PRODUCTION WAS 719,414 TONS IN 1945

## - PATENTS AND KNOW-HON WERE EXCHANGED BETWEEN COMPANIES

## EXPEDITING PROCEDURES IMPLEMENTED:

[^0]IV.

DOE TEST/DEMONSTRATION FACILITIES
DIFFEREITIATED BY THE KIND OF INFORMATION TO BE OBTAINED - NOT
NECESSARILY BY AMOUNTS OF RAW MATERIAL PROCESSED
LABCRATORY BENCH EXPERIMENTS CONFIRM KEY PROCESS STEPS
PROCESS DEVELOPMENT UNITS (PDU's)
10 TEST
SIAL TYPE (MOT

- ESSTABLISHES ECONOMIC/ENVIRONNENTAL/PRODUCTIVE CAPACITY OF COMNERCIAL-SIZE PLANT
- INTEGRATES AND OPERATES A SINGLE DEVELOPMENTAL MODULAR UNIT OF COMMERCIAL-SIZED
- CONPONENTS
- PLANNED TO BE EXPANDED TO BECOIE PART OF THE COMNERCIAL PLANT

MAJOR COAL GASIFICATION PILOT AND DEMONSTRATION PLANTS


[^1]
COAL CONSUMPTION




0000anc
0000 BIGAS
COGAS
HYGAS
Shell-Koppers
ROCkwell Mrlten Salt
British Gas/Slagging Lurgi
Texaco (TVA)
SMALL SCALE PILOT PLANTS
Great Plains/SNG/LURGI
TVA/Texaco ?
DEMONSTRATION PROCESSES

COGAS (ICGG)
British Gas/Slagging Lurgi (CONOCO)
Texaco (W. R. Grace)
HYGAS (Memphis)
U-GAS (Memph LARGE SCALE PILOT PLANTS

BIGAS
cogas
HYGAS Rockwell Malten Salt British Gas/Slagging Texaco (TVA)

SMALL SCALE PILOT PLANTS


00000000000
pascdord-d 'ubịsad-d
PROCESS DEVELOPFEHT SCHEDULE FOR TEST PRRGPAM


|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
| － |  |
| 1： |  |
|  |  |
|  |  |
|  |  |
| ＋ |  |
|  |  |
|  |  |
| 1．：：：： |  |
| $\ldots \cdot \ldots$ |  |
|  |  |
|  |  |
| 7 ：1：1111111 |  |
| 両1：！！！！！！ |  |
| 明！！！！！！！！！！ |  |
| $\ldots \ldots \ldots$ |  |
|  |  |
|  |  |
|  | は！！！ |

PROGRAMMATIC STATUS

BY MAR/APR 1980

- COGAS PROCESS DEVELOPED BY COGAS DEVELOPMENT CO. (FMC CORP., CONSOLIDATED
Char fines combustor
pilot plant located at leatherhead, england (inclunes coed 50 tpd coal.
EARLY 1970's)
GAS SUPPLY CO., PANHANDLE EASTERN PIPELINE CO., TENN GAS PIPELINE CO.):
- CONSISTS OF MLTI STAGE FLUID bEd PYROLYZERS, FLUId bEd GASIfIER, SLAG PYROLYSIS PROCESS dEVELOPED IN PILOT PLANT IN PRINCETON 50 TPD COAL PYROLYSIS PROCESS DEVELOPED IN PILOT PLANT IN PRINCETON, N.J. dURING
EARLY 1970's)
(EARIY 1970 s)
british gas slagging lurgi process developed by british cas corp. at WESTFIELD, SCOTLAND: HIGHER TEMP OVER SLAGGING ASH BOTTONS
- 300 TPD DEVELOPMENT UNIT IN OPERATION
procurement, site acquisition, construction start
PROGRNAMTIC STATUS

PROGRAMMATIC STATUS
ब3g asxis asayils oxan

> - CURRENT PROJECT OBJECTIVES INCLUDE:

$$
\begin{aligned}
& \text { FUNDING: } \quad \text { SK } \\
& \begin{array}{ll}
\text { FY80 } & \text { FY81 } \\
6,000 & 7,000^{*}
\end{array}
\end{aligned}
$$

## 路

## - CONTINUE IMPROVEMENTS TO GASIFIER AND ITS SUPPORT SYSTEMS

ब\&OILJ\&LS HO -
PROGRAMPATIC STATUS
HRI FAST FLUIDIZED BED

- PROGRAM OBJECTIVES INCLUDE: development of Low/med btu gasifier to achieve significant increase in throughput and improved turndown capability
- Capability for processing caking coals without pretreatrent
IN
recycling
- pdu operated during 1978 on eastern bituminous conl
- design modification studies completed for higher teip operation and accan
bottoms and fines
- testing to be performed during fy80
FY81 FINDING - ?
PROGRAMMATIC STATUS
> $\underline{U-G A S}$ (IGT)
> - PRECURSOR STUDIES BEGAN BY IGT IN 1945:
> - 6 INC. DIA. FLUIDIZED BED REACTOR USED
> - CYCLONE REACTOR ALSO EMPLOYED
> - 18 TPD PLANT CONSTRUCTED IN CHICAGO IN 1950:
> - STUDIES CONTINUED UNTIL 1953

> FEATURED FLASH PULVERIZER AND SLAGGING GASIFIER
> CONTINUED R\&D WITH PDU DURING 1964-1973 PERIOD FOR DEVELOPMENT OF
> (nIg-HOIH) SVOKH ONG VSD-n HILOG
> .6tpd pilot plant operation started
> pilot plant operation started in chicago in 1974:
> - Operated until 1977 with ocr and doi funds
> - CONTINUED (1978-present) under doe and memphis light, gas \& hater

> MEMPHIS LIGHT, GAS \& WATER AWARDED CONTRACT BY DOE FOR CONCEPTUAL DESIGN
> OR A 2800 TPD MBG demo plant in 1978
> (EARLY 1989 "SELECTED OVER W. R. GRACE IN COMPETITION")
PROGRAMMATIC STATUS
TEXACO
TEXACO

- PRECURSOR PROCESS development traceable to 1945 :
- "texaco synthesis gas generation" process
- 75 plants with 160 Gasifiers licensed since 1950
- texaco coal gasification process development inititated in 1948
- comercial design by w. r. grace \& co. (doe funding) of 1700 tpd demo plant
TO MEMPHIS LIGHT IN EARLY 1980) 135 tpd ammonia at muscle shoals, al. 1978-1980 tVa began siting and conceptual design studies for 20,000 tpd mbg comeencial
scale demo plant for north alabama (texaco gasifier under consideration) im 1979
Currently, texaco operates 15 tpd high press plant at montebelio, ca. and recemtly
completed 160 tpd plant in essen, west germany
PROGRAMMATIC STATUS
> $\mathrm{CO}_{2}$ ACCEPTOR
> - CONSOLIdATED COAL CO. PERFORMED ExTENSIVE BENCh TESTS IN 1964
> - OCR/ERDA/DOE SUPPORT inititated in 1964 resulted in 30 tpd pilot Plant at rapid City, s. D.:
- operation started in mid-1972
- pilot plant operated from 1972-1977 with longest continuous
$\quad$ run of 12 days
- CURRENT status: pilot plant work completed

HYGAS

- PILOT PLANT HAS BEEN OPERATING AT IGT, CHAICAGO SINCE 1972:
- 80 TPD CAPACITY CONVERSION TO PIPELINE GAS PLANT OPERATING
UNDER OCR/DOI/AGR SPONSORSHIP
- OPERATIONS PERFORMED WITH HYDROGEN SOURCE FROM STEAM REFORMING
OF NATURAL GAS DURING 1971-1972
- MAOR EMPHASIS (BY DOE) PLACED ON PROVIDING DESIGN CONCEPTS FOR
COMRERCIAL DEMONSTRATION IN 1977 (DOE CONTRACT TO PROCON
COMLERCIAL DESIGN COMPLETED IN 1979
WEST INGHOUSE TWO-STAGE FLUIDIZED BED
PROGRAMMATIC STATUS

$$
\frac{\text { FUNDING: } \quad \text { FK }}{8,000} \quad \frac{\text { FY81 }}{9,000 *}
$$

$$
\begin{aligned}
& \text { - PROGRAM OBJECTIVES INCLUDE: } \\
& \text { - DEVELOPMENT OF LOW/MED BTU GASIFIER TO ACHIEVE SIGNIFICANT INCREASE IN } \\
& \text { THROUGHPUT AND IMPROVED TURNDOWN CAPABILITY } \\
& \text { - CAPABILITY FOR PROCESSING CAKING COALS WITHOUT PRETREATMENT } \\
& \text { PROCESS UNDER DEVELOPMENT SINCE 1972: } \\
& \text { - } 15 \text { TPD PDU COMPLETED IN } 1974 \text { AT MONROEVILLE, PA } \\
& \text { - DPERATION OF COMPLETE INTEGRATED SYSTEM PERFORMED DURING 1978/79 } \\
& \text { - PROCESS PERFORMANCE AND PRODUCT GAS CHARACTERIZATION DATA FOR VARIOUS } \\
& \text { COALS OBTAINED DURING FY80 } \\
& \text { - FY81 FUNDING WILL BE USED TO CONTINUE THIS PROJECT TO OBTAIN DATA ON: } \\
& \text { - DESIGN AND SCALE-UP DATA ON GASIFIER SYSTEM AND COMPONENTS } \\
& \text { - TRANSIENT/FAILURE MODE BEHAVIOR } \\
& \text { - CONTROL SYSTEM CHARACTERISTICS } \\
& \text { - PROCESS ECONOMICS }
\end{aligned}
$$

CATALYTIC GASIFICATION
PROMISING 3RD GENERATION PROCESS

| FUNDING: | SK |
| :--- | :--- |
| FY80 | FY81 |
| 9,000 | 13,200 |

- USES COAL IMPREGNATED WITH ALKALI METAL CATALYST TO CONVERT COAL DIRECTLY INTO SNG WITHIN GASIFIER IN SINGLE STEP
HIGHER EFFICIENCY THAN THERMAL PROCESSES
- reduced reactor heat input and gas stream heating and cooling
- pdu initiated at exxon in fy79 (baytown, texas)
PROGRAMMATIC STATUS

DATA BASE
FY 81 FUNDING WILL PERMIT APPROX 10 MONTHS OPERATION OF INTEGRATED SYSTEM:
- DOWN STREAM PROCESSES - CO SHIFT, ACID GAS REMOVAL, METHANATION, SULFUR RECOVERY
- WILL PROVIDE DETAILED INFORMATION FOR SCALE-UP TO NEAR-COMMERCIAL OR COMALERCLAL
- DATA FROM DONNSTREAM COMPONENTS APPLICABLE TO OTHER GASIFTCATION PROJECTS
PROGRAMAMTIC STATUS

PROGRAMMATIC STATUS
HYDROGASIFICATION

| HYDROGASIFICATION |
| :--- |

- SHORT RESIDENCE tive hYDROGASIFIER TESTED AT 3/4 TPH LEVEL
- design/Construction of minimal integrated pdu
- continued support work in related hydocasification areas
- fy81 activities to include:
- COMPREHENSIVE tESTING OF RI $3 / 4$ TPH PDU
- preliminary design of comercial process
- hydrogasification support efforts
PROGRAMPATIC STATUS


PROCESS RESEARCH/TECHNOLOGY DEVELOPMBNT
3RD GENERATION PROCESSES FOR ADVANCING STATE-OF-THE-ART:

- HI-MASS FLUX (HINF) GASIEIER TO PRODUCE MBG - KOLTEN SALT TO RIODUCE LBG (MBG BY USING OXYGEN VS. AIR) (MBG BY USING OXYGEN VS. HIF (BELL AEROSPACE TEXIRON) TO ASSESS 100 MILLISECOADS .5 TPH AIR BLOWN REACTOR ( 15 ATM, $2400^{\circ} \mathrm{F}$ ) USED FOR PROCESS EVALUATIOA TO BE
COSPLETED IN FY80
- FY81 ACTIVITY TO INCLUDE UPGRADING UNIT FOR HIGIER PRESSURB, LONGER DURITON.

AND COYMBCIAL PLANT STUDIES

## MOLTEN SALT (BI)

- PDU PROGRAM FOR PRODUCIAG LBG WILL BE CONRLETED DURING FY8O INCLUDIIG IESI

OF CONSIRUCTION MATERIALS AND COLLECTION OF OPERATING DATA

- DESIGX AND PROCURENFIT WILL BE INITIATED POR PDU FOR OPERATIOA WITA OSEEA
PROGRAMMYITIC STATUS

| LOW BTU -ENTRAINED-BED GASIFICATION (ATMOSPHERIC) |
| :--- |

- honever, adVantage of an existing facility in conjunction hith an experienced
development tenc to be complete testing with the design coal was recogiized
and Led to decision to continue project in fy 0
- CONGRESS added \$3M to FY80 appropriations to continue testing program
fybi activities planned to:
- test coals from illinois, hontana, arizona, and lignite
- will use air-blown and oxygen enriched air-blown gasification
IV. SELECTED COAL GASIFICATION PILOT PLANT PERFORMANCE HISTORIES
COAL GASIFICATION PLANT FAILURES

[^2]
National Association of Corrosion Engineers, DOE, Lawrence Berkley Laboratory

> The National Bureau of Standards Failure Informationsl Center has summarized
the failure modes of 463 reports from various pilot and demonstration plants from 1976 to Aptil, 1979
PARTIAL REFERENCF LIST

- "TECHNICAL EVALUATION FOR JOINT DOE-GRI COAL GASIFICATION"
C. F. BRAUN \& CO. (BY ROGER DETMAN)
EFFORT BEGAN IN 1972 AND CONTINUED UNTIL 1978 - "ENGINEERING SUPPORT SERVICES FOR THE DOE-GRI COAL GASIFICATION RESEARCH PROGRAM" PULLMAN KELLOGG
EFFORT BEGAN IN 1978 AND IS CURRENTLY ONGOING "LOW BTU COAL GASIFICATION PROCESSES VOL. 1 SUMMARY, SCRFENING AND
ORNL
COMPARISONS"
"ASSESSMENT OF LONG-TERM RESEARCH NEEDS FOR COAL-GASIFICATION TECHNOLOGIES"
FOSSIL ENERGY RESEARCH WORKING GROUP-DOE

CCAL GASIFICALION
PILOO PLANT RUU: HISTORIES
BIGAS
- MESTINGHOUSE
- $\mathrm{CO}_{2}$ ACCEPTOR
- sYnthane


## bigas pilot plant

HOMER CITY, PA.
DOE/GRI
BITUMINOUS COAL
(BCR)
BITUMINOUS COAL RESEARCH
HJUGJSJy 7母OJ SnONIWחIIg
PHILLIPS COAL RESEARC:I
STEARNS-ROGER INC. 120 TPI CAPACITY, ENTRAINED FLOH, SLAGGING 2 STAGE
GASIFIER THAT OPERATES UP TO TEMPERATUPES OF ABOUT
3000
INCLUDE AND PRESSURES OF 1500 PSIG. PREPANT, GASITSITIER, CHAR RECOVERY, GAS
CLEAN UP, ACID GAS REMOVAL \& METHANATOR
$\stackrel{\circ}{-7}$
LOCATION
SPONSORS
DEVELOPER
PRIME
CONTRACTOR
TECHICAL
CONSULTANT
MANAGEMENT
CONTRACTOR
OPERATIONS \&
MAINTENANCE
CONTRACTOR
PLANT
DESCRIPTION
INITIAL
OPERATION
DATE
CAUSE
FAILURE OF GASIFIER OVERHEAD QUENCH SYSTEM
W/RESULTANT DOWNSTREAM DAMAGE
HIGH STORAGE POND LEVEL AND HIGH CONCENTRATION
OF H2S IN PURGE GAS
CHAR BURNER PROBLEMS:
COOLING WATER LEARS EXPANSION
BELLOWS LINER MELTING
RUPTURED CHAR BURNER PIPE RESULTING FIRE
DESTROYED ELECTRICAL EQUIPMENT NEAR GASIFIER
RUPTURED CHAR BURNER:
REST:LTING FIRE DAMAGE TO BUILDING
MAJOR TIME LOSSES
AUG. - DEC. 76
DEC. 76 - MAR. 77
DEC. 77 - JAN. 78
FEB. 78 - JULY 78
FEB. 79 - AUG. 79
1N甘7d 107Id SU9Ia

- SLAG tap hole plugging and lack of confirmation of slag

MATERIALS PROBLEMS
INABILITY TO SUSTAIN A REASOHABLE PERIOD OF STEADY STATE
FLOW


## IESI PUN SUMMARY <br> BCR BI－GAS PILOT PLANT HOMER CITY，PENNYSYIVANIA

$$
\begin{aligned}
& \text { RESULTING } \\
& \text { TURNAROUND } \\
& \text { WORK } \\
& \hline
\end{aligned}
$$

RUN DURATION
$\overline{\text { NOILYNIWAGL }}$
YOA
NOSUGY


Tax xettoq
Ty 6utyeat
osouxeyt I
70 oxnttes
a6e7s 470q 70 əxnties－ －sy7eəys ardnosowxay7 I －Leaking high pressure
boiler relief valves boiler relief valves
－Loss of visual confir Loss of visual confirm－
ation of slag tapping
ation of slag tapping Unreliable thermoncouple
readings

Unable to relight the
slag tap burner
slag tap burner
Problems with sl
Problems with slag
removal
？suratqoxd buttdures－ various vessel level control problems

> －Gasifier cooling water leak into Stage I at
char burner


| $\dot{4}$ | $\dot{4}$ |
| :--- | :--- |
| $\infty$ | $\infty$ |

$\dot{4}$
$\infty$
$\infty$

## 6L6I＇Sて＇bて・qoa <br> Feb．4． 1979

$\dot{H}$
$\underset{\sim}{n}$
$N$
Dec．13，14， 1978


|  |  | $\begin{aligned} & \infty \\ & \stackrel{\infty}{\boldsymbol{o}} \\ & \boldsymbol{r} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: |
|  | $\infty$ |  |  |
|  | $\stackrel{\sim}{2}$ | － | $\stackrel{\sim}{1}$ |
|  | － | $\cdots$ | a |
| （1） |  | ， | T |
|  | － | $\cdots$ |  |
|  |  | $\sim$ | $\cdots$ |
|  | $\begin{aligned} & \cup \\ & \stackrel{U}{0} \end{aligned}$ | $\begin{aligned} & \dot{0} \\ & \mathbf{Q} \end{aligned}$ | $\underset{\sim}{0}$ |

[^3]BI-GAS
TEST RUN
NUMBER
¢
G-8A
G-8B
ob
TEST RIN SUMMARY
char
$$
1
$$
BCR BI-GAS PILOT PLANI
HOMER CITY, PENHSYLVANIA
REASON
FOR
TERMINATION

- Leaking valve at
"A" coal leg
- Coal feed problems
to the gasifier
RUN DURATION
$35 \mathrm{HrS}$.
$55.5 \mathrm{Hrs}$.
DATE
Oct. $23-25,1979$
Dec. 10-12, 1979

$$
\begin{aligned}
& \text { RESURTING } \\
& \text { TURNAROUND } \\
& \text { WORK } \\
& \text { Modification of } \\
& \text { feed "C" }
\end{aligned}
$$


HYGAS PILOT PLANT
CHICAGO, ILL.
DOE/GRI
167
167

$\underset{\sim}{7}$
LOCATION
SPOHISORS
DEVELOPER
CONTRACTOR
PLANT
DESCRIPTION
IMITIAL
OPERATIOW
DATE
HYGAS PILOT PLANT
MOST MOTABLE PROBLEMS
SYSTEM

- EROSION in SlurRy feed system partly nue to lack of contral
of density \& velocity of slurry
- plugging of h.p. punps and liaes in slurry system
- erosion in the reaction system especially in the solids flow
FORMATION OF CLINKERS DUE TO TEMPERATURE CONTROL PRORLEMS
valve problens (EROSION AND MECHANICAL FAILURE)
$\frac{\text { TEST PRA SLMMARY }}{\text { LGTHYGAS PIIOT PIANT }}$

| PESULTING |
| :---: |
| TURNAROUND |
| WORK | - Modify coal

mill operation - Installation
pretreated char storage system 1

$$
\begin{aligned}
& \text { - Char feed problems } \\
& \text { - Coal pretreater problems } \\
& \text { weather }
\end{aligned}
$$ - Solids flow obstruction

- Solids flow obstruction in the slurry eryer

$$
\begin{aligned}
& \text { - Valve erosion at bottom } \\
& \text { of siurry mix tank }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Valve erosion ar dociom } \\
& \text { of siurry mix tank } \\
& \text { - clury feed nrablems }
\end{aligned}
$$

- Slurry feed problems (equipment ${ }^{\text {f }}$ plugging)

$$
\begin{aligned}
& \begin{array}{l}
H \\
0 \\
4 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& \text { - Neather }
\end{aligned}
$$

$$
\begin{aligned}
& \text { REASON } \\
& \text { FOR } \\
& \text { TERMINATION } \\
& \hline
\end{aligned}
$$

- Trouble with high pressure
slurry pumps
- Coal mill problems
- Valve problems

RUN DURATION

20-24 Hrs.
DATE
Oct. 3-6, 1978
Nov. 2-17, 1978
Dec. $16,1978-$
Jan. 14,1979
Feb. 10, $1979-$
Mar. 11,1979

[^4]75
$\oplus \sim$
$\oplus$


None me7sKs
lo17uos
pestned

- Stainless steel tubing on instrumen by incoloy


178 Hrs .

## FOR TE.RMINATION

## Voluntary shut down

Problems: (1) Leaking
H.P. Slurry Pump.
(2) Seal blown in
(2) Seal blown in
transfer line (3) Coal
prep coal feed
Coal feed problems

$$
\begin{aligned}
& \text { Lift line restrictions } \\
& \text { causing prossure rupture } \\
& \text { in pipes } \\
& \text { Slurry line leaks } \\
& \text { Leaking packing in : } . \text { P. } \\
& \text { steam values } \\
& \text { Malfunction of level } 6 \\
& \text { density valves }
\end{aligned}
$$

- Mechanical linkage to

$$
\begin{aligned}
& \text { valve failed in slurry } \\
& \text { dryer to gasifier line }
\end{aligned}
$$

Instrumentation failure
DATE
APril 27-May 9.
June $189-J u l y=$
1979
Aug. $7-$ Aug. 9,
1979

[^5]©
81

IEST RUHY SUMYARV
IGI－SIEAM－OXYGEN hYGAS PILOL PLDNI
IGI－STEAM－OXYGEN HYGAE PILOL ：LNII
CHICAGO，ILLINOIS
RUN DURATION
RFASON
NOILUNIW甘Ga
yoa

SNILIOSAX
Replacement of
worn parts
1 －Thermocouple problems swotqoxd دəxutio
suratqoad moti sptios－
－Holes in lines
Pretest of solids
flow lines
1 causing solids flow
problems in the slurry
dryer \＆high temperature
reactor
pabpotsṭp sotdnoدouxayu－
Slurry dryer and／or lines
plugged
－Solids flow problems
－sN Ob－Z

6L6I＇カT－s •0əの －ー・


GGGNON
LSGL LDI $\underset{\infty}{N}$
$\infty$
$\qquad$ －

IfStiratrase piol
WALZ MIL, PA.
DOE/GRI

## MESTINGHOSE <br> hESTINGHOSE

15 TPD, FWIDIZTD BED, 2 STAGE PPESSIRIZTD GASIFICATICN
 TO 2OOOFF. PLAAT IMCLIEES CONL PREP, DEVLIATILIIZR, CYCLOES, GASIFIER COBBISTOR, AN SCPIBEER SYSTE!.
吉
1

KESTINCHOUSE PDU
MOST NOTABE EPROBIIES

- CYCLOE PROBLENS (SOLIDS BUILDOP AND IMPROPER OPERATION)
- MATERILL PPRBLEMS (BROKGN, CRACKED, OR ERDOED PIPE, ETC.)
MECHNICAL PRBBLENS (COAL FED EOUIPYENT, ETC.)
$\underline{C_{2} \text { ACCPPTOR PILOT PLANT }}$


| $\frac{C_{2}}{2}$ ACCEPTOR PILOT PLANT |
| :--- |
| MOST MOTABLE PROBLENS |

- INSTRMETATIION \& CONTROS (MEASUREENT, CONTROQ VALYES, ETC.)
- PUGGED LINES (LIF LINES, CHAR TRASFER LINES, ETC.)
- SOLIDS BUILD IP IN GASIFIER
- poler failure
SMTHAE PIOT PLATI
EPICETON, PA.


## DOE/GPI

DOE-PERC
ums
75 TPD CAPACITY, FWIIITED PEP GASIFIEP OPERATING TEPPERATUE 18000\% OfeRating Peessie 1000 PSIG PLANT INCUIOES COAL PREP \& PRETREATMET, GASIFIER, SCRUBER, WASTE TPEATEMT, ACID

星
SMTHME PILI PLANT
MOST MOTAELE PRTELOUS

- GASIFIER OPERATIONL PROBLEMS (PPESSCLIE \& TEPPEPATLPE ONTDN
- MAIERIALS PRRBLENS (VALVE FAILPE, PIPELIE STSTEM LEASS, ERCSIIN)


ORIGLNAL PAGE 1. OR POOR QUALITY
MATERIALS APPLICATIONS FOR ENTRAINED
FLOW COAL GASIFICATION PLANT

> MATERIALS
> NICKEL-CHROME WHITE CAST IRON CASE AND IMPELLER, SHAFT SLEEVE 8620 STEEL CARBURIZED TO 550 BHN
$1-1 / 48$ CR-1/2\& MO STEEL
SHELL TUBES A-106, GR. B, A335 GRADES $\mathrm{P}-1, \mathrm{P}-11, \mathrm{P}-22$, 304 S.S.
316 STAINLESS STEEL PIPE
CARBON STEEL CASE IMPELLER WITH $12 \%$
CR TRIM A516-70 CARBON STEEL CASE WITH NO. 3 STELLITE NOZZLES INTERIAALS (NOT REPLACEABLE)
( 2 SPARES) (2 SPARES)
304 ETAIRLESS STEEL
MCRTEL-RESISTANT TO COM-
BUSTION IN OXYGEN
$2-1 / 48$ CR-18 MO.
REACTOR SHELN SIPING
REFRCTORY LINED.

## ECUTPMENT

SLURRY TRANSFER \& SLURRY CIRCULATING PUMPS

> ysxed xtyds
HEATER
HOT NITROGEN TRANSFER LINE
WASHER RECYCLE PUMPS
COAL CYCLONE VESSEL
REACTANT INJECTION
PIPING
GASIPIER-REACTOR

## PROCESS STEP

## SNIス\& K\&ants

GASIFIER SYSTEM

## 1/48 CR-1/28 MO STEEL

1-1/48 CR-1/2\& MO, STEEL
304 s.S. HEADER TUBES
316 STAINLESS STEEL CASE
IMPELLER, $17-4$ PH SHAPT


MATERIALS APPLICATIONS FOR ENTRAINED
FLOW COAL GASIFICATION FLANT CLAD WITH $1 / 8-1 \mathrm{Cl}$.
STAINLESS STEEL 304 STAINLESS
STEEL REFRACTORY $2-1 / 48$ CR-18 MO; OUENCH ZONE IS WATER JACKETED, 309 STAINLess steel WATER COOLED AND

SA-516-70 STEEL SHELL MONEL

316 sTAINLESS STEEL 316 STAIMLESS STBEL

2-1/4t CR-18 mo GASIFIER QUENCH
SECTION PITING
CHARFEED VESSEL
RAW GAS TRANSFER
PIPE
SLAG OUTLET LOCR-
HOPPER
GAS WASHER
GAS WASHER RECYCLE
COOLER
GAS WASHER CIRCULATING
PUMPS
CO SHIFT HEATER
CO SHIFT REACTOR
METHANATOR FEED
HEATER
dNNYATD
SYO MYX

## CO SHIFT

 PRIMARYMETRARATIOA
0
SPECIELC PROBICEMS
(problens for entraned flow are faitriy typical of the
GASIFICATION INDCSTRY)
MATERIAL
INCONEL ALLOY 680
321 SS
INCOLOY 825
NICREL CHRONE WAITE CAST
HOLYBDENUM WIEA 0.03* THICK
$\mathrm{CR}_{2} \mathrm{O}_{3}$ COATIAG
MATERIAL

$$
\begin{aligned}
& \text { TUNGSTEN CARBIDE } \\
& \text { BRONZE (LAYERED } 1
\end{aligned}
$$

HRRD,

SPECIEIC PROBLEMS
EMIRAINED FLOH GASIFICAIION
$3043 S$
MONEL

## MONEL

3165
$\varepsilon$
PILOL PLANT IPERALIONS
the major problems are similar at most pilot plants rfgardless
OF PROCESS
MAJOR PROBLEMS ARE RELATED TO HIGH-TEMPERATURE/PREGSURE COAL
SLURRY \& DIRTY GAS

- pilot plants are in business to make process work; not to develop
pumps, valves etc.
- a failure of a purp or valve may not be considered a failure unless
a plant shut down results, eg. a valve fails but can be by-passed
- most piping, pumps q valves failures are considered maintenance
problems a not reportable failures
- these - maintenance problems - are continuous


## VI. SELECTED COMMERCIAL COAL GASIFICATION PLANT OPERATIONAL HISTORIES

COMMENTS ON K-T PROCESS
KOPPERS TOTZEK PRODUCES A GAS SIMILAR TO THE TEXACO PROCESS PRODUCT GAS - ash removal technique abjut the same as texaco
KT CAN BE THROTTLED TO ABOUT $25 \%$ OF RATED CAPACITY
50 plants have been built around the world using kt process (about 20 are in operation) - MODDERFONTEIN, SOUTH AFRICA PLANT CONTAINS SIX TWO-hEADED GASIFIERS ( 1000 TONS/DAY AMMONIA PLUS SOME METHANOL)

- talcher, india plant contains three four-headed gasifiers ( 1000 tons/day ammonia) - CONTRACT SIGNED (MARCH,1979) TO PROVIDE PLANT FOR PETROBRAS OF BRAZIL there are no kt plants of any scale in u. S. but there is at least one project that is CONSIDERING KT FOR A $\mathbf{1 0 , 0 0 0}$ TPD PLANT the theoretical advantages of some of the 2nd and 3rd generation processes are airactive, however, the confidence which can be placed in these processes for timely continuous product GAS IS STILL IN QUESTION
kt is a proven process and possible developments in the process (e.g. pressurized version)
SHOULD BE CONSIDERED and parts for several processes because of the similar products
LIGNITE
ONIANTONI TYOD so Sadx

Gasification plants using the K-T procciss

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Fual \& Number el Cacino Unim \& \begin{tabular}{l}
Cemerny: \\
\(\mathrm{CO}+\mathrm{m}\) \\
in \(2 \times\) hewn
\end{tabular} \& Uee al Syathecte Coe \& Veen d Orter \\
\hline Charbonnages de France, Paris, Mazingarbe Works (P.d.C.) France \& Coal Dust. Coke-Oven-Gas, Tail Gas \& 1 \& \[
\begin{aligned}
\& 78000- \\
\& 150000 \mathrm{Nm} \\
\& 279000- \\
\& 5560000 \mathrm{SCF}
\end{aligned}
\] \& Methanol. and Ammonia Synthesis \& 10 \\
\hline Typpi Oy, Oulu Finland \& Coal Dust, Oil, Peat \& 3 \& \[
\begin{array}{r}
140000 \mathrm{Nm}^{2} \\
5210000 \text { SCF }
\end{array}
\] \& Ammonia Synthesis \& 185 \\
\hline Nihon Suiso Kogyo Kaisha, Lid., Tokyo Japan \& Coal Dust \& 3 \& \[
\begin{array}{r}
210000 \mathrm{Nm}^{3} \\
7820000 \mathrm{SCF}
\end{array}
\] \& Ammonia Synthenis \& 184 \\
\hline Empresa Nacional "Calvo Sotelo" de Combustibles Liquidos y Lubricantes, S.A., Madrid, Nitrogen Works in Puentes de Garcia Rodriguez, Coruna Spain \& Lignite Dust \& 3 \& \[
\begin{aligned}
\& 242000 \mathrm{Nm}^{\prime} \\
\& 000000 \mathrm{SCF}
\end{aligned}
\] \& Ammonia Synthesis \& 1884 \\
\hline Typpi Oy, Oulu Finland \& Coal Dust, Oil, Peal \& 2 \& \[
\begin{array}{r}
140000 \mathrm{Nm}{ }^{2} \\
8210000 \mathrm{SCF}
\end{array}
\] \& Ammonia Syninecie \& 143 \\
\hline S.A. Union Chimique Belge, Bruseuls, Zandvoorde Works Belgium \& Bunker-C-Oil, Plant convertible for Coal Dust Gasification \& 2 \& \[
\begin{array}{r}
178000 \mathrm{Nm} \mathrm{~m}^{\prime} \\
6550000 \mathrm{SCF}
\end{array}
\] \& Ammonia Synthesis \& 198 \\
\hline Amoniaco Portugute S.A.R.L., Lisbon, Estarroja Plant Portugal \& Meavy Gaceline, Plant extendable to Lignite and Anthracite Duat Gagification \& 2 \& \[
\begin{aligned}
\& 169000 \mathrm{Nm}^{3} \\
\& 800000 \mathrm{SCF}
\end{aligned}
\] \& Ammonia Synthesis \& 1930 \\
\hline The Government of the Kingdom of Greece, The Ministry of Coordination, Athens, Nitrogenous Fertilizer Plant, Ptolemais, Greece \& Lignite Dust, Bunher-C-Oil \& 4 \& \[
\begin{array}{r}
629000 \mathrm{Nm}^{\prime} \\
23450000 \mathrm{SCF}
\end{array}
\] \& Ammonia Synthesis \& 183 \\
\hline Emprasa Nacionel "Calvo Sotelo" de Combustibles Liquidos y Lubricantes, S.A., Madnd, Nitrogen Works in Puentes de Garcia Rodriguez, Coruna, Spain \& Lignite Dusi or Naphtha \& 1 \& \[
\begin{array}{r}
175000 \mathrm{Nm}^{3} \\
6500000 \mathrm{SCF}
\end{array}
\] \& Ammonia Synthesis \& 1881 \\
\hline The General Organization for Executing the Five Year Industrial Plan. Cairo, Nitrogen Works of Societt el Nas d'Engrais et d'Industriss Chimiquee, Allaka, Suez Uniled Arabien Republique \& Relinery OFGas, L. P.G. and Light Naphtha \& 3 \& \[
\begin{array}{r}
778000 \mathrm{Nm}^{2} \\
28950000 \mathrm{SCF}
\end{array}
\] \& Ammonia Synthesia \& 183 \\
\hline \begin{tabular}{l}
Chemical Fertilizer Company Lid, \\
Thailand, \\
Synthetic Fortilizer Plant \\
af Mae Moh, Lampang \\
Thailand \\
- Aepeer O.der
\end{tabular} \& . Lignite Dust \& \begin{tabular}{l}
1 \\
68
\end{tabular} \& \begin{tabular}{l}
\(217000 \mathrm{Nm}^{2}\) 8070000 SCF \\
ORIGINAL OF POOR
\end{tabular} \& \begin{tabular}{l}
Ammonia Synthesie \\
PAGE !. QUALITY
\end{tabular} \& 1988

0 <br>
\hline
\end{tabular}

|  | Puel | Mumber of Cooviter Unito | Copertiy: $\mathrm{Ce}+\mathrm{M}_{4}$ in N hewn | Une of Spulimels 000 | $V_{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Azol Sanayii T.A. S., Ankara, Kutahya Works, Turkey | Lignite Oust | 4 | 7800 Nm 24008 CF | Ammenia Syminetio | 183 |
| Chemieanlanen Enport-Import G.m.b.H., Berlin fur VEB Germania, Chemioanlagen und Apparatebau. Kerl-Mary-Stadt VEB Zoitz Works | Vecuum residue and/or luel oil | 2 | $\begin{array}{r} 33^{30000} \mathrm{Nm} \\ \hline 600 \mathrm{SCF} \end{array}$ | Raw gas to produce nydrogen lor hydro. genation | 143 |
| Kobe Steel Lid., Kobe Japan for Induatrial Development Corp. Zambia, al Kalue near Lusaka Zambia, Alrica | Coal Oust | 1 | $\begin{array}{r} 214320 \mathrm{Nm} \\ 7 \\ 980000 \text { SCF } \end{array}$ | Ammonia Synthesis | 1837 |
| Nitrogenous Fertilizers Industry S.A., Athens, Nitrogenous Fertilizers Plant Plolemais. Gresce ${ }^{\bullet}$ | Lignite Dust | 1 | $\begin{aligned} & 165000 \mathrm{Nm}^{2} \\ & 6150000 \mathrm{SCF} \end{aligned}$ | Ammenia Synthesis | 1900 |
| The Fertilizer Corporation of Indie Lid., New Delhi, Remegundem Pient, Indie | Coal Dust | (I) of inom eo atend by) | $\begin{array}{r} 2000000 \mathrm{Nm} \\ 74450000 \mathrm{SCF} \end{array}$ | Ammonia Synthesie | 1890 |
| The Fertilizer Corporation of India Lid., New Delhi, Talcher Plant, India* | Coal Oust | (1 ef theow ec ovenc-by) | $\begin{array}{r} 2000000 \mathrm{Nm}{ }^{\prime} \\ 74450000 \mathrm{SCF} \end{array}$ | Ammonia Synthesis | 1970 |
| Nitrogenous Fertilizers Industey S A., Athens, Nitrogenous Fertilizers Plant Ptolemais, Greece ${ }^{-}$ | Lignite Dust | 1 | $\begin{aligned} & 242000 \text { Nm' } \\ & 9009000 \text { SCF } \end{aligned}$ | Ammonia Synthesis | 1870 |
| The Ferthizer Corporation of India Lid. <br> New Oelni. <br> Korba Piant, India * | Coal Dus! | (1 ol them act atend by) | $\begin{array}{r} 2000000 \mathrm{Nm} \\ 74450000 \mathrm{SCF} \end{array}$ | Ammonia Synthesis | 1072 |
| AE \& CI LId., Sohannesburg. Modderlontein Plant. South Alica | Coal Dusi | 6 | $\begin{aligned} & 2150000 \mathrm{Nm}^{1} \\ & 00025000 \mathrm{SCF} \end{aligned}$ | Anmonla Synthesia | 1072 |
| Indeco Chemicala Lid.. <br> Lusake, <br> Kalue Works. <br> Zambis* | Conl Duet | 1 | $\begin{aligned} & 220800 \mathrm{Nm}^{\prime} \\ & 220000 \mathrm{sCF} \end{aligned}$ | Amments Byntheale | 1874 |
| Indeco Chemicals !id. <br> Lusake. <br> Kalue Worke. <br> Zambie* | Coel Dusi | 2 | $\begin{array}{r} 41000 \mathrm{Nm} \\ 164400008 \mathrm{Cf} \end{array}$ | Ammenie Eynimeeve | 1975 |

Koppers Compens inc. Mrnownt M. 18218
KOPPERS TOTZEK COMMERCIAL PLANT
OPERATIONAL HISTORIES
MODDERFONTEIN PLANT - AE\&CI LTD, JOHANNESBURG, SOUTH AFRICA
PLANT ORDERED IN 1972. INITIAL STARTUP IN LATE 1974
SIX TWO-HEADED GASIFIERS

$$
\text { DESIGN CAPACITY: } 1100 \text { TONS/DAY APMMONIA (~ } 210 \text { TON/DAY/GASIFIER) }
$$

$$
\text { OXYGEN BLOWN, OPERATING TEMP } \sim 2900^{\circ} \mathrm{F}
$$

$$
\text { COAL FEED: SUBBITUMINOUS, } 14 \% \text { ASH, } 1 \% \text { SULFUR, } 36 \% \text { VOLATILES }
$$

DESIGN PHILOSOPHY

- TWO-HEADED GASIFIERS SELECTED BECAIJSE OF LACK OF OPERATING EXPERIENCE
- PLANT MADE UP OF SINGLE, DOUBLE, AND MLLTISTREAM UNITS FOR RELIABILITY, HOWEVER - NO SPARE GASIFIER (IN RESTROSPFCT IT WAS RFCOGNIZED ADVANTAGEOUS

TO HAVE SPARE GASIFIER TO ALLOW SCHEDULED GASIFIER MAINTENANCE WITHOUT REDUCING OVERALL PLANT RATE)

INCREASED CAPITAL COST WAS CONSIDERED NECESSARY BECAUSE OF EXPECTED LOW RELIABILITY OF CERTAIN UNITS DUE TO COAL RELATED PROBLEMS OR USE OF FEWER STREAMS WOULD HAVE RESULTED IN SIZE SCALE-UP WELL BEYOND THE RANGE OR TRIED AND PROVEN EQUIPMENT EXISTING AT THAT TIME

PLANT DESIGNED FOR STABLE OPERATION DOWN TO 50\% OF DESIGN RATE TO PERMIT CONTINUOUS OPERATION WITH EQUIPMENT DOWN

PROVISION FOR TWO UNITS OF BOILERS, ELECTROSTATIC PRECIPITATORS, AND GAS COMPRESSORS CONSIDERED ECONOMICALLY JUSTIFIED (SOLIDS FOULING EXPECTED)
KOPPERS-TOTZEK COMMERCIAL PLANT
OPERATIONAL HISTORIES
MODDERFONTEIIN PLANT - AE\&CI LTD, JOHANNESBURG, SOUTH AFRICA
OPERATING EXPERIENCE
START-UP TESTING OF ENTIRE FACILITY INITIATED IN LATE 1974
START-UP TESTING OF ENTIRE FACH MECHANICAL AND PROCESS PROBLEMS OCCURRED DURING FIRST FEW YEARS OF OPERATION (THRU 1979)
PLANT DID OPERATE IN 1978 WITH ON-STREAM TIME OF 818 AND HAS ACHIEVED DESIGN OUTPUT FOR FIVE GASIFIERS FOR LIMITED PERIODS PROBLEMS WERE STILL OCCURRING IN 1979
(IPEL DETECTORS MANY SPURIOUS SHOTDONS DO OXYGEN BACK FLOW DUST BUNKER EXPLODED ON ONE OCASTREAM OF EXPLOSION OCCURRED IN WASK TOWER AND IN A WASH TOWER CAUSED BY FAILURE OF OXYGEN TRIP VALVES TO STOP FLOW AFTER GASIFIER SHUTDOWN ASH IMPINGEMENT ON BOILER TUBES CAUSED EROSION AND FAILURE (AS A TRAII, FIX, TUBE SURFACES COATED WITH ABRASION RESISTANT ALUMINA MATERIALS) NUMEROUS SHUTDOWNS DURING EARLY OPERATION RESULTED IN THERMAL CYCLING WHICR CAUSED MANY LEAKS IN PIPES AND VESSEL JOINTS (ON-SITE TEAM OF LEAK REPAIR EXPERTS ESTABLISHED) WHILE K-T PLANTS HAD OPERATED IN GREECE AND TURKEY POR YEARS WITH SANE
REFRACTORY LININGS, MODDERFONTEIN SYSTEMS HAD TO BE REDESIGNED AND ALL GRSIPIERS WERE RELINED IN 1977 (PROBLEMS RELATED TO COAL FEEDSTOCK)
KOPPERS-TOT2EK COMMERCIAL PLANT
OPERATIONAL HISTORIES
MODDERFONTEIN PLANT - AEGCI LTD, JOHANNESBURG, SOUTH AFRICA

$$
\begin{aligned}
& \text { - MINOR LEAKS OF PRODUCT GAS THROUGHOUT PLANT HAVE LED TO PERSONNEL } \\
& \text { BEING EFFECTED BY TOXICITY OF CO } \\
& \text { - GAS COMPRESSORS HAVE BEEN PRONE TO LEAKAGE FROM CASING JOINTS AND } \\
& \text { SEALS (MODIFICATION WERE MADE AND A CO INFRARED ANALYZER WAS TO BE. } \\
& \text { INSTALLED TO MONITOR } 12 \text { LOCATIONS) } \\
& \text { - LABORATORY ASSISTANT WAS KILLED BY CO INHALATION WHILE TAKING GAS } \\
& \text { SAMPLE FROM ELECTROSTATIC PRECIPITATORS WHICH ARE USED TO REMOVE } \\
& \text { ASH FROM RAW GAS } \\
& \text { - RELEASE VALVE FAILURE ON GAS COMPRESSOR OIL CONSOLE CAUSED OIL FIRE } \\
& \text { - NUMEROUS SHUTDOWNS CAUSED BY INSTRUMENTATION FAILURE/INACCURACY IN } \\
& \text { MONITORING/CONTROLLING OPERATION OF BLOWPIPE PRESSURES, SCREW FFEDER- } \\
& \text { SPEED, OXYGEN FLOW RATES, AND DUST BUNKER LEVELS } \\
& \text { - COAL DUST PRECIPITATORS ON COAL MILLING PLANT REQUIRED MODIFICATION } \\
& \text { TO MEET COAL DUST EMISSION LIMIT OF } 150 \text { mg./Cu.m. }
\end{aligned}
$$

- Major problem areas (CONTINUED)
KOPPERS-TOTZEK COMMERCIAL PLANT
OPERATIONAL HISTORIES
BASIC PROCESS UNITS HAD BEEN PROVEN ELSEWHERE BEFORE BEING SELECTED FOR
MODDERFONTEIN PLANT
but at lower capacities and in different process routes
PLANT WAS TO SOME EXTENT A PROTOTYPE
MANY PROBLEMS ATtRIBUTED TO NATURE OF SOUTH AFRICAN COAL
INITIAL COAL USED HAD ASH FLOW TEMP OF $1375^{\circ}$ - $1390^{\circ} \mathrm{C}$
GASIFIER OUTLET TEMP OF $1550^{\circ}-1600^{\circ} \mathrm{C}$ RESULTED IN MOLTEN SLAG
CONTACTING REFRACTORY LINING MATERIAL (CASTABLE CHROME) - COOLING SYSTEM NOT DESIGNED FOR THIS CONDITION AND FROZEN SLAG LAYER NOT ESTABLISHED WHICH PERMITTED LOSS OR REFRACTORY INITIAL COAL PRODUCED $80 \%$ ASH ENTRAINMENT VERSUS 55: EXPE
TRAIL GASIFICATION OF ORIGINAL COAL FEEDSTOCK IN A FULL-SCALE GASIFICATION plant would have identified many problems at the design stage
- EVEN WITH PROBLEMS ENCOUNTERED, PROCESS IS BASICALLY SOUND
KOPPERS TOTZEK COMMERCIAL PLANT
OPERATIONAL HISTORIES
RAMAGUNDAM AND TALCHER, INDIA PLANTS - FERTILIZER CORP. OF INDIA


## RAMAGUNDAM PLANT ORDERED IN 1969, INITIAL STARTUP 1978/79

TALCHER PLANT ORDERED IN 1970, INITIAL STARTUP 1978/79
both plants are similar and have adopted identical process routes
THREE FOUR-HEADED GASIFIERS (FIRST KRUPP-KOPPERS FOUR-HEADERS) DESIGN CAPACITY: 900 TON/DAY AMMONIA (~ 390 TON/DAY/GASIFER) OXYGEN BLOWN, OPERATING TEMP $\sim 2900^{\circ} \mathrm{F}$
COAL FEED: BITUMINOUS, 18\% ASH, $30 \%$ VOLATILE MATTER

> DESIGN PHIL LOSOPHY
WEIGH AVAILABLE TECHNOLOGY (K-T, PRESSURIZED LURGI, WINKLER, OTTO RUMMEL) and review pilot plant data KEY SELECTION CRITERIA WITH DIFFERING ASH CHARACTERISTICS, SWELLING AND CAKING INDEXES DESPITE HIGHER OXYGEN CONSUMPTION (CONCERN WITH LURGI ROTARY GRATE) additional criteria was "import factor" (lurgi plant would require higher proportions of imports for plant equipment)
KOPPERS TOT2EK COMMERCIAL PLANT
OPERATIONAL HISTORIES
RAMAGUNDAM AND TALCHER, INDIA PLANTS - FERTILIZER CORP. OF INDIA
OPERATING EXPERIENCE
(GASIFIER NO. 1410 HRS, NO. 2244 HRS, NO. 3112 HRS: CONTINUOUS RUN 76 HRS)
TWO GASIFIERS COMMISSIONED AT RAMAGUNDAM
( GASIFIER NO. 1278 HRS, NO. 2154 HRS, CONTINUOUS RUN 67 HRS.)
REMAINING FACILITY SYSTEMS ARE BEING COMMISSIONED IN 1979
MANOR PROBLEM AREAS

- dURING COMMISSIONING OF TALCHER NO. 1 GASIFIER 50 RUNS WERE MADE WITH VARIOUS PROBLEMS OCCURING
DUST BUNKER LEVEL DETECTORS
ADDITION OF LIMESTONE FLUX IN EARLY RUNS TO CREATE REFRACTORY SLAG LAYER FREQUENT CHORING OF GASIFIER NECK OCCURRED HIGHER THAN NORMAL MOISTURE CONTENT IN COAL FEED (2-38 vs. 18) CAUSED PROBLEMS. IN TRANSFERRING COAL DUST, FROM SERVICE BUNKER AND JAMMING OF SCREW FEEDERS
BACK FIRING OF BLOW PIPES DUE TO HIGHER FINES CONTENT (SCREW FEED RATE
INCONSISTENT WITH PREADJUSTED OXYGEN - COAL DUST BURNER DIAMETER REDUCED)
KOPPERS TOTZEK COMMERCIAL PLANT
OPERATIONAL HISTORIES
RAMAGUNDAM AND TALCHER, INDIA PLANTS - FERTILIZER CORP. OF INDIA
- s'JMILAR PROBLEMS ENCOUNTERED DURING COMMISSIONING OF RAMAGUNDAM PLANT


## CONCLUSIONS

## MAJOR PROBLEMS RELATED TO INSTRUMENTATION/CONTROLS AND CAUSES EXTERNAL

TO GASIFIER, e.g. NONAVAILABILITY OF NITROGEN, OXYGEN, POWER FAILURE, boilerfeed water failure

- NO BASIC DESIGN PROBLEMS
VII. CRITICAL TECHNOLOGY AREAS


MANOR SYSTEM ELEMENTS:  $\qquad$

CRIUICAL TECHHOLOEY APEAS

COAL GASIFICATION
CR'TICAL AREAS FOR SUPPORTING TECHNOLOGY DEVELOPMENT

AIR SEPARATION

- CRYOGENIC FLUIDS HANDLING/STORAGE
- NITROGEN UTILIZATION
- SEPARATION PKOCESS,SYSTEM EFFICIENCY


## AUXILIARY EQUIPMENT

- GAS PRESSURIZATION
- APPLICATION OF GAS-TURBJNE POWERED CENTRIFUGAL COMPRESSIONS - TURBINE BLADE CORROSION. EFFICIENCIES, CONTROL
- WATER PURIFICATION
$\circ$
- ALTERNATE WATER QUENCHING AND WASHING TECHNIQUES
COAL GASIFICATION
CRITICAL AREAS FOR SUPPORTING TECHINOLOGY DEVELOPMENT

> METALIURGICAL DEVELOPMENT - H $\quad$ S COROSION AND H: JROGEN EMBRITTLEMENT OF STEEL AT HIGH TEMPERATURE - ADVANCED/ALTERNATE MATERIALS APPLICATIONS - CO AND H2 ATTACK AT INTERMEDIATE TEMPERATURES - ABRASIVE WEAR OF METALS - EROSIVE WEAR OF REFRACTORIES - STRESS CORROSION CRACKING - TEMPER EMBRITTLEMENT OF STEEL AT HIGH TEMPERATURES - METAL FATIGUE AND CREEP AT HIGH TEMPERATURES
GASIFIER

## SCALE-UP UNCERTAINTIES

- COAL PRETREATMENT AND FEED MECHANISMS GASIFIER CONFIGURATION/DESIGN
COMBUSTION KINETICS/REACTIONS/RESIDENCE TIMES
- PREDICTIVE MODELING
- COAL MINERAL CONSTITUENTS EFFECTS ON REACTOR OPERATING CONDITIONS
- MONITORING AND CONTROL


## - EROSION DETECTION AND MONITORING E.G. ULTRASONIC TRANSDUCERS

 FOR COAL, ASH, AND CHAR TRANSPORT SYSTEMS STENM[^6]COAL GASIFICATION
CRITICAL AREAS SUPPORTING TECHNOLOGY DEVELOPMENT
WASTE DISPOSAL

- PROCESS-SPECIFIC DATA TO CHARACTERIZE TOTAL SPECTRUM OF POLLUTANTS
- $\mathrm{SO}_{2}, \mathrm{CO}_{2}$, NOX HAZARDOUS TRACE MATERIALS EMISSIONS CONTROL/MONITORING
- SOLID WASTE DISPOSAL/UTILIZATION OF BY-PRODUCTS
- AIRBORNE PARTICULATES ENTRAPMENT
GAS DISTRIBUTION
PIPELINE/STORAGE FACILITY MATERIALS/DESIGN FOR GAS COMPOSED OF HIGH
CONCENTRATIONS OF $\mathrm{H}_{2}$ AND CO
- HAZARDS/TOXICITY
AEROSPACE TECHNOLOGY TRANSFER
ROCKETDYNE DIVISION/ROCKWELL INTERNATIONAL IS CONDUCTING RESEARCH PROGRAM
FOR DOE TO DEVELOP TECHNOLOG: TO LIQUEFY COAL VIA DIRECT HYDROGENATION:
- RAPID MIXING, REACTION, AND QUENCHING OF PULVERIZED COAL/hydrogfn
 without flijicizing the coal

$$
\text { MIXED WITH } 1500^{\circ} \mathrm{F} \text { HYDROGEN IN ENTRAINED FLOW REACTOR }
$$

COAL AND HYDROGEN REACT FOR 10-100 MILLISECONDS
effluent is quenched by water spray nozzles oo prevent further hydrogenation to gas
J-2 STAND AT SANTA SUSANA FIELD UTILIZED FOR ONE-TON-PER-HOUR TEST FACILITY
reactor utilizes a rocket engine injector element


CRIIICAL TECHNOLOGY AREAS
CRITICAL TECHNOLOGY DEVELOPMENT REQUIREMENTS CAN BE CATAGORIZED BY
MAJOr SYSTEM ELEMENTS OR GENERIC DISCIPLINE AREAS

- COAL PREPARATION AND INJECTION
- AIR SEFAKATION
- AUXILLIARY EQUIPMENT
- GASIFIER
- GAS CLEANUP
- WASTE DISPOSAL
- GAS DISTRIBUTION

CONVERSION PROCESSES
MATERIALS AND COMPONENTS
- instrumentation and controls
MAJGR SYSIEM ELEMENTS:

GENERIC DISCIPLINE AREAS
CONVERSION PROCESSES

| REQUIREMENT FOR PROCESS IMPROVEMENTS TO LOHER COST: |
| :--- |
| - SIMPLIFY/PEDUCE NUMBER OF STEPS |
| - INCREASE PRODUCTION RATES PER UNIT VOLUME OF REACTOR |
| - INCREASE THERMAL EFFICIENCIES |

- develop basic chemical and engireering knowledge to facilitate inception/
development of new/modified processes
- determine technical feasibility of new process concepts under steady
state conditions
- conduct supporting rad to complement/improve known processes under
development
EXAMPLE TECHNOLOGY DEVELOPMENT AREAS
CONVERSION PROCESSES

> - ESTABLISH ENGINEERING DATA BASE ON REACTION KINETICS/CHEMISTRY/THERMODYNAMICS OF GASIFICATION PROCESSES - ANALYTICAL MODELING OF GASIFICATION PROCESSES - NEW METHANATION CATALYSTS AND ADVANCED METHANATION REACTOR CONFIGURATIONS - INFLUENCE OF MIXING ON KINETIC PROCESSES IN ENTRAINED FLOW GASIFIERS - COAL AND CHAR REACTIVITIES IN GASIFICATION ENVIRONMENTS - MECHANISM OF THE H2S - DOLOMITE REACTION - HIGH PRESSURE VENTURI SCRUBBERS
MATERIALS AND COMPONENTS


- DEVELOP ENGINELRING KNOWLEDGE OF PECHANISIS OF EROSION/CORROSION// SYSTEM O LEating end endurance Against WEAR AND DETERIURATIGN
mede fidels for thick-halled Pressure
- obtain realistic material-test data
MATERIALS AND COMPONENTS
> - DEVELOP SULFIDATION RESISTANT ALLOYS AND METALS FOR USE IN HIGH TEMP GASIFIERS
TECHNIQUES FOR WELDING AND CLADDING LOW ALLOY AND CR-MO PRESSURE VESSEL STEELS
- INVESTIGATE MICROSTRUCTURAL EFFECTS IN ABRASIVE WEAR
STABILITY OF SILICON CARBIDE REFRACTORIES IN COAL GASIFIER ENVIRONMENTS
WEAR RESISTANT ALLOYS FOR COAL HANDLING EQUIPMENT

> DEVELOP/SELECT COMPATIBLE COATINGS FOR INTERNAL SURFACES OF GASIFIERS
DESIGN/ENGINEERING OF REFRACTORY LINERS FOR SLAGGING GASIFIERS

- DEVELOP AUTOMATED WELDING PROCESSES FOR FIELD FABRICATION OF THICK-WALLED PRESSURE VESSELS
- DEVELOP TECHNIQUES FOR CONTINUOUS FEEDING OF COAL TO PRESSURIZED REACTORS
- DEVELOP/TEST LOCK HOPPER VALVES TO PERFORM UNDER :IARSH ENVIRONMENTS CENTRIFUGAL SLURRY FEED PUMPS/O $\mathrm{O}_{2}$ COMPRESSORS
- FRACTURE MECHANICS AND SURFACE CHEMISTRY STUDIES OF STEELS

INSTKUMENTATLON AND CONTROLS

INSTRUMENTATION AND CONTROLS
- adVanced transducers and thermocouples for monitoring of reactor vessel OPERATING CONDITIONS - EROS:ON DETECTION AND MONITURING FOR COAL/ASH/SLAC/CHAR TRANSPORT - GAMMA RADIOGRAPHY/THERHOGRAPHY FOR INSPECTION OF REFRACTORY LINED
- ULTRASONIC TRANSDUCERS
- acoustic coupling materials
- OPTICAL AND MICROWAVE TECHNIQUES FOR AUTOMATED GAS SPECIES DETER INATION
APPLICATION OF MICROPROCESSORS FOR SIGNAL CONDITIONING
MEASUREMENT OF FLOW RATES FOR COAL, RECYCLE SOLIDS, ETC.
CONTROL OF SLAG BATH LEVEL
INTEGRATED, COMPUTERIZED MASTER CONTROL SYSTEM AND VISUAL DISPLAYS
- automated pisocess controls


## VIII. COAL GASIFICATION TECHNOLOGY DEVELOPMENT REQUIREMENTS

- SYSTEMS DEVELOPIENT


SUPPORTIMG TECHNOLOGY DEVELOPMEMT RATIOMALE

END
INTENSIVE AND
COAL GASIFICATION FACILITIES ARE HIGHLY CAPITAL PROUUCT COSTS ARE VERY SENSITIVE TO: CONVERSION EFFICIENCY OPERATING CONDITIONS - IMPROVEIENTS IN CONVERSION PROCESS ECONOMICS AIID EFFICIENCY WILL RESULT FROM:
plant scaleup
HIGHER PRESSURES/TEMPLRATURES
faster reaction times
better contact between reactants many current operating problems and shutdowns in pilot plants are directly attribuiable to use of comiercial subsysiems/COMPONENTS - NOT DESIGNED FOR HIGH TEM'S/HARSH ENVIRONMENT OF GASIFIER - design must be for specific Application TECHNICAL AND ECONOMIC VIABILITY ARE DIRECTLY DEPENDENT ON: Phocess control via instrurentation - EFFICIENCY/RELIABILITY/DURABILITY/MAINTAINABILITY OF SUBSYSTEMS, COMPONENTS,
FOSSIL ENERGY RESEARCH WORKING GROUP REPORT


## Hydrodynamics of gasifiers are poorly understood:

- Channeling in gasifiers beds
Turbulent flows/two phase flows Diagnostic tools now used are too crude to provide quantitative information
of the type needed for modeling: - Direct probing of reactor beds is usually inadequate for determining concentrations and local temperatures
Locating hotspots by inserting steel rods that melt is too crude a technique to define temperature levels acceptably Diagnostic techniques and methods in existing gasification units tend to be simple and are in general, inadequate
- Mostly apply commcercial instrumentation used in the petrochemical and
FOSSIL ENERGY RESEARCH WORKING GROUP

| NAME |
| :---: |
| Stanford S. Penner Chairman |
| Seymour Alpert |
| Vincente Bendenillo |
| Louis E. Furlong ${ }^{(1)}$ |
| Lester Lees |
| Duane Levine ${ }^{(1)}$ |
| Nicholas Nahas ${ }^{(1)}$ |
| Eric Reichl |
| John Ross |
| Robert Sieg ${ }^{(2)}$ |
| Arthur M Squires |
| John Thomas ${ }^{(2)}$ |

AFFILIATION
(1) Alternate members (from Exxon)
(2) Alternate members (from Chevron)
FOSSIL ENERGY RESEARCH WORKING GROUP
FROM DIRECTORS OF MAJOR GASIFICATION PROJECTS

INDIVIDUAL

RECOMMENDATIONS OBTAINED

A. J. Weiss, Manager
Coal Gasification
Erle K. Diehl, Manager
Utilization Research
Roger Detman,
Project Manager
John D. Sudbury,
Vice President
Robert C. Ellman,
Research Supervisor
Gasification
John S. Wilson,
Assistant Director
Energy Conversion and
Utilization Division
Robert Lewie,
Institute of Gas Technology
(I.G.T.)
Rockwell International,
Synthane Pilot Plant, DOE

Div. (I.G.T.)

$$
\begin{aligned}
& \text { Manager } \\
& \text { Synthane Program }
\end{aligned}
$$

$$
\begin{aligned}
& \text { A. L. Kehl, } \\
& \text { Program Manager }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Program Manager } \\
& \text { Molten Salt Gasification }
\end{aligned}
$$

Progran
Process Research

GASIFIER

- SHFLL DESIGNS AND CONSTRUCTION
SOLIDS REMOVAL IN GASEOUS STREAMS
ELECTROSTATIC PRECIPITATORS
PONER RECOVERX GAS EXPANDER TURBINES

DRY SOLIDS FEEDERS
SEAL VALVES AND ROTARY VALVES
PRIMARY USE IN LOCK HOPPER APPLICATIONS WHERE SEAL VALVES AND ROTARY VALVES ARE CRITICAL COMPONENTS METHODS INCLUDE EXTRUDERS, SCREW PUMPS \& PISTON FEEDERS A REASONABLE AMOUNT OF DEVELOPMENT WORK IS BEING DONE IN THIS AREA; IN ORDER TO PROVIDE SUITABLE FEEDER SYSTEMS FOR COAL GASIFICATION COMMERCIALIZATION THIS DEVELOPMENT SHOULD CONTINUE

- PRESENT TECHNOLOGY IS NOT AVALIABLE FOR SATISFACTORY OPERATION IN COAL
GASIFICATION
- PROBLEMS INCLUDE EROSION OF SEALING SURFACES, MIGRATION OF COAL DUST

INTO STUFFING BOX, LARGE SHAFT MECHANICAL DESIGN

- THE STATUS OF DEVELOPMENT FOR SEAL VALVES AND ROTARY VALVES IS NOT

SUFFICIENT FOR COMERCIAL SCALP PLANTS BUT IF CURRENT DEVELOPMENT
CONTINUES MOST OF THE MAJOR PROBLEMS SHOULD BE SOLVED.
-
都 GASAPICRIION


[^7]GASIFIFR
SHELL DESIGN AND CONSTPUCTION

- INDUSTRY IS PRESENTLY CAPABLE OF DESIGNING AND FABRICATING
VESSELS TO THE REQUIREMENTS OF MOST PROCESSES
- DEVELOPMENT WORK SHOULD BE DONE IN THE AREAS OF ADVANCEMENT OF
THE STATE-OF-THE-ART AND OPTIMIZATION OF MATERIALS, PROCEDURES
AND TOOLS;
MINIMUM REQUIREMENTS FOR DESIGN, FABRICATION; ERECTION, AND
INSPECTION NEED TO BE ESTABLISHED
REPPACTORY MATERIALS
- MATERIAIS ARE CURRENTLY AVAIABLE FOR PIRST COMMYRCIAL PLALIY
- THE EFFECTS OF START-UP, SHUT-DONN AND LOAD-FOLIONING CYCLES ARE NOT WELI KNOWN
- SUTTABES RETRACTORIES ARE NEEDED FOR DIRECT CONTACT WITM MOLTEN SIMG OR A MOLTEN BATH IN ORDER TO REDUCZ DONN TIME
PUMPS

CENTRIFUGAL PUMPS:

## TUBES, ETC.)

- DEVELOPMENT WORK IS NEEDED ON CENTRIFUGAL PUMPS ESPECIALLY IN THE CONTROL OF ABRASIVE WEAR AND EROSION ON WETTED PARTS (IMPELLER, SUCTION dISCHARGE

THIS DEVELOPMENT WOULD SUPPORT OPTIMIZATION OF FLUID FLOW CHARACTERISITCS AND PUMP MATERIALS. 1

RECIPROCATING PUMPS
COMMERCIAL
MAY BE USED IN SOME APPLICATIONS FOR COAL-WATRR OR COAL-OIL PEED
APPLICATIONS ON
SOLIDS REMOVAL FROM GASEOUS STREAMS
THE REMOVAL OF SOLIDS FROM HOT, HIGH TEMPERATURE GAS (2000 ${ }^{\circ} \mathrm{F}, 1000$ PSIG) IS
BEYOND THE PRESENT STATE-OF-THE-ART.

- CAPACITIES, TEMPERATURES, PRESSURES AND EROSIVE CONDITIONS UNIQUE
TO COAL GASIFICATION ARE NOT DIRECTLY COMPARABLE TO PRESENT COMMIRRCIAL practices
- Problems not well defined: materials need to be founl for service in
THE HIGH TEMPERATURE ENTRAINED SOLIDS GAS

TO EFPICIENCY AND PARTICLE SIEE
POSSIBLE OSE OF GRANULAR BED FILTERS NEEDS TO BE VERIFIED WITH RDDITIOMAL dESIGN AND DEVELOPMENT TO MEET THE REQUIREMENTS OF COAL GASIFICATION

ELECTROSTATIC PRECIPITATORS

OPERATING LIMITS OF ELECTROSTATIC PRECIPITATORS ; ;HOULD BE EXTENDED TO accomodate the higher ranges of temperatures and pressures fncountrtred IN COMPERCIAL SIZE PLANTS
DEVELOPMENT WORK IS NEEDED TO ACHIEVE A RELIABLE ELECTRICAL AND MLCBAMICAL SYSTEM
POWER RECOVERY GAS EXPANDER TURBINES

- DEVELOPMENT IN SOLIDS REMOVAL FROM GASEOUS STREAMS VILL HELP DETERMINT
REQUIREMENTS FOR GAS RECOVERY COMPONENTS
PROBLEM AREAS:
- CORROSION FROM GAS CONSTITUENTS
EROSION OF GAS PATH CONPONENTS
- EXCESSIVELY hIGH vLAEE AND DISC TEMPRRATURES
- INTERSTAGE DEPOSITION OF PARTICULATES
matruas maumarais



 ondritas

> mor proxens niens nicure:
and


- Eecsion by dre mod ver sounto

MATERIALS FAILURE MODES IA COAL CMMVEPSIOH PLANTS

MATERIALS REQUIREMENTS


## PROBLEM AREAS AMD DEVELOPMENT REQUIREMENTS

## alloys may be susceptible to chemical degradation and phase changes.


REFRACTORIES NEED TO BE FOUND THAT HAVE MECHANICAL AND INSULATING
 THROUGHOUT THE APPLICATION AND OPERATING SEQUENCES. - metals should be developed that will provide adeguate long-term erosion

[^8]MATERIALS REQUIREMENTS
PROBLEM AREAS GND DEVELOPMENT REQUIREMENTS (COII'T)

- VERIFICATION THAT MATERIALS BEHAVE AS PREDICTED AND ARE ADEOUATE
FOR THE OPERATING CONDITIONS ACTUALLY ENCOUNTERED.
- IDENTIFY AND CONTROL UNFORESEEN MATERIALS DESIGN LIMITATIONS THAT
MAY ARISE IN SPECIFIC EQUIPMENT ITEMS OR IONNSTREAM FACILITIES
- STRESS-CORROSION, ASH-CORROSION, CORROSION-FATIGUE, PITTIMG-
CORROSIJN AND THERMAL CYCLE FATIGUE FOR EXPECTED ENVIRONMERTAL
CONDITIONS MUST BE STUDIED.
- DEVELOP NONDESTRUCTIVE TESTING TECHNIQUES FOR MATERIAL INSPECTION
DURING PLANT OPERATION
- MUCH OF THE AVAILABLE INSTRUMENTATION IS INADEQUATE FOR THF REQUIRFMENTS OF ADVANCED PROCESSES
LITTLE INCENTIVE FOR ADVANCEMENT OF INSTRUMENT TECHNOLOGY BY THE USUAL COMMERCTAL EQUIPMENT SUPPLIERS DUE TO:
- lack of signtficant market
- UNDERFINED SPECIFICATIONS
- EFFECTS OF THE DYNAMIC NATURE OF SYNTHETIC FUEL TFCHNOLOGY ON RQUIPMENT


## REQUIREMENTS

- TECHNOLOGY REQUIRED TO IDENTIFY THE APPROPRIATE MEASUREMENTS AND CONTROLS

IS LACRING: THE LIMITED AMOUNT OF DIAGNOSTIC AND PERFORMANCE INSTRUMENTATION INSTALLED AT PILOT PLANTS HAS FURTHER COMPOUNDED ! CH IS PROBLEM

HIGH PRIORITY PROBLEM AREAS IN MEASUREMENT, TESTING ETC.: TEMPERATURE MULTI-MASS FLOW LETDOWN PHASE DETECTION ON LINE ANALYSIS LEVEL DETECTION

VISCOMETRY
IECHNOLOGY READINESS FOR DEMONSTRALIOH AND EABLY
CURRENT PRACTICE IS TO DESIGN ON A PROJECT-BY-PROJECT BASIS USING:

- COMPONENTS THAT ARE COMMERCIALLY AVAILABLE
- MANUFACTURERS' RECOMMENDATIONS
COMMERCIAL PLANT APPLICAIION
- INADEQUATE APPLICATION OF AVAILABLE TECHNOLOGY
- duplication of effort


## pOOR INFORHATION EXCHANGE

- PROPRIETARY INFORMATION
- TECHNOLOGY DEVELOPMENT SCHEDULES DO NOT COINCIDE WITH DEMONSTRATION
PLANT SCHEDULES
- COAL/SOLIDS PRCPERTIES AS THEY AFFECT INSTRUMENTATION AND CONTROLS
- IMPROVED materials for instrumentation are needed as well as betwer selection of available materials
MEASLIREMENTS


## ATMOSPHERES OF MIXED PHASE MASS FLOW ARE CORROSIVE AND ABRASIVE, OFTEN

AT HIGH TEMPERATURE AND PRESSURE
VELOCITY PROFILES ARE COMPLEX, LIQUID, SOLID \& GAS FRACTIONS FLOW AT dIfferent average speeds. particle speed depends on particle size in the

## SOLID FRACTION

> TEMPERATURE MEASUREMENT INSIDE REACTORS IS CHARACTERIIED BY HIGH TEMPERATURES
> PRESSURES, AND SEVERE EROSIVE/CORROSIVE CONDITIONS
> higher temperature probes have short lifetime (Often less than 50 hours) AND INSUFFICIENT LONG-TERM CALIBRATION STABILITY
 taps, VOIDS IN BEDS, NON-UNIFORMITY OF DENSITIES AND LEVELS IN THE REACTOR

N LINE
COMPOSITION MONITORING, ESPECIALLY STREAMS BETWEEN COMBUSTION OR CONVEREION vessels
IESTING
pilot plants have a process development mission to perform
on a none interference basis
pilot plant schedules are not reliable to the extent required
to plan firm test schedules
problems with experimental equipment can cause delays in plant schedules
LOTId IV Gahsitdwojov ax Lonivo noilulnawnalsni man do noilwaitto plants
IX. DOE FOSSIL ENERGY COAL GASIFICATION ADVANCED

RESEARCH AND SUPPORTING TECHNOLOGY DEVELOPMENTS
PROPOSED
URIGNAL PAGE IS OF POOR QUALITY
U.S. DEPARTMENT OF ENERGY
OFFICE OF ASSISTANT SECRETARY FOR FOSSIL ENERGY
U.S. OEPARTMENT OF ENERGY
OFFICE OF ASSISTANT SECRETARY FOR FOSSIL ENERGY
Nev: An manuavat ave





 |  | 1 |
| :---: | :---: |
| 8 | 1 |
| 8 | 8 |
| 8 | 1 |
| 8 | 8 |


orice or assis:ant secterant for rossit entaor

DEPARTMENT OF EHERGY
FOSSIL ENEPGY


movancel nescancw

DEPARTIENTL OF EHERGY

## FOSSIL ENERGY <br> ADVAHCED RESEARCH AND TECHMOLOGY DEVELOPMENT

OBJECTIVES
IEPARTFEHT OF EHERGY
FOSSIL EMERGY

|  |  |
| :---: | :---: |
|  |  |
|  | 141905 |
|  | [11 ${ }^{1} 19$ |






DOE FOSSIL ENERGY

CONVERSION PROCESSES

## MAJOR THRUSTS IN FY 80

- INCREASED REACTION RATES/METIN
- dEVELOPMENT/EVALUATION OF INNOVATIVE GASIFICATION PROCESSES - fundamental studies on coal chemistry - dEVELOPMENT OF IMPROVED CATALYSTS - coal mineral content effects

DATA ON SHORT RESIDENCE TIMES REACTIONS OF COAL WITH HYDROGEN - DEMONSTRATE BENEFIT OF LIME PRETREATMENT OF COAL INCREASED REACTION RATES/METHANE YIELDS
Q - cNumecte cas
FY 81 ACTIVITIES

- NOVEL CONCEPTS FOR PRODUCTION OF LOW COST SYNTHESIS GAS
- FUNDANIENTAL STUDIES ON:
- CONL CHEMISTRY/STRUCTURE
- CONVERSION PROCESSES
- CONTROLLING PARAMETERS IN PROCESSES
- EXPANDED EFFORT ON INCREASING THERMAL EFFICIENCY
FY 81 ACTIVITIES
- NOVEL CONCEPTS FOR PRODUCTION OF LOW COST SYNTHESIS GAS
- FUNDANENTAL STUDIES ON:
- CONL CHEMISTRY/STRUCTURE
- CONVERSION PROCESSES
- CONTROLLING PARAMETERS IN PROCESSES
- EXPANDED EFFORT ON INCREASING THERMAL EFFICIENCY
FY 81 ACTIVITIES
- NOVEL CONCEPTS FOR PRODUCTION OF LOW COST SYNTHESIS GAS
- FUNDANIENTAL STUDIES ON:
- CONL CHEMISTRY/STRUCTURE
- CONVERSION PROCESSES
- CONTROLLING PARAMETERS IN PROCESSES
- EXPANDED EFFORT ON INCREASING THERMAL EFFICIENCY
FY 81 ACTIVITIES
- NOVEL CONCEPTS FOR PRODUCTION OF LOW COST SYNTHESIS GAS
- FUNDANIENTAL STUDIES ON:
- CONL CHEMISTRY/STRUCTURE
- CONVERSION PROCESSES
- CONTROLLING PARAMETERS IN PROCESSES
- EXPANDED EFFORT ON INCREASING THERMAL EFFICIENCY
FY 81 ACTIVITIES
- NOVEL CONCEPTS FOR PRODUCTION OF LOW COST SYNTHESIS GAS
- FUNDANIENTAL STUDIES ON:
- CONL CHEMISTRY/STRUCTURE
- CONVERSION PROCESSES
- CONTROLLING PARAMETERS IN PROCESSES
- EXPANDED EFFORT ON INCREASING THERMAL EFFICIENCY
- engineering design data for pressure vessels
- CONSTRUCTION OF PILOT FACILITY FOR TESTING SLAGGING GASIfiERS - operation of tubular ceramic heat exchanger - testing of lock hopper valves
HIGH PRESS/VOL SLURRY PUMP DEVELOPMENT MODULE FAB/ASSEMBLY - testing of high capacity oxygen compressor
ADVANCED RESEARCH AND TECHNOLOGY DEVELOPMENT


## MATERIALS AND COMPONENTS

$$
\text { MAJOR THRUSTS IN FY } 80
$$

- CONSTRUCTION OF PILOT FACILITY FOR TESTING SLAGGING GASIFIERS
- OPERATION OF TUBULAR CERAMIC HEAT EXCHANGER
- TESTING OF LOCK HOPPER VALVES
- HIGH PRESS/VOL SLURRY PUMP DEVELOPMENT MODULE FAB/ASSEMBLY
- TESTING OF HIGH CAPACITY OXYGEN COMPRESSOR
- SELECTION/DEVELOPMENT OF COMPATIBLE COATINGS FOR INTERNAL SURFACES OF GASIFIERS
- FEASIBILITY STUDY TO GUIDE DEVELOPMENT OF SULFADATION-RESISTANT ALLOYS AND METALS
FOR USE IN HIGH TEMP GASIFIERS


## FY 81 ACTIVITIES

- MATERIALS EFFORT WILL SHIFT EMPHASIS: - FROM TEST/EVAL OF ALLOYS FOR SPECIFIC GASIFIER INTERNALS - to Studies to determine mechanisms of Corrosive attack DETERMINATION OF DESIGN PARANETERS FOR SLAGGING GASIPIER REFRACTORY LIMINGS AND REFINE MATERIALS CRITERIA FOR CERAMIC HEAT EXCHANGERS CONTINUED DEVELOPNENT/TEST OF COAL FEED SYSTEMS THROUGH PILOT PLNNT SCALE (BY FY82)
DOE FOSSIL ENERGY
ADVANCED RESEARCH AND TECHNOLOGY DEVELOPMENT


## INSTRUMENTATION AND CONTROLS

- STUDIES OF CONTROL SYSTEMS CONCEPTS BASED ON EMERGING TECHNOLOGIES SUCH AS LASER FIBER OPTICS


## FY 81 ACTIVITIES

- formulate/initiate definitive analytical and experimental projects related

TO CONTROL SYSTEMS
DOE FOSSIL ENERGY
ADVANCED RESEARCH AND TECHNOLOGY DEVELOPMENT
UNIVERSITY COAL RESEARCH
MAJOR THRUSTS IN FY 80

- COMBUSTION OF COAL AND SYNTHETIC FUELS
- COAL CHARACTERIZATION
- STRUCTURE AND REACTIONS OF COAL AND ANALYSIS OF ITS CONVERSION PRODUCTS
- MULTI-PHASE FLOW PHENOMENA
- FUNDAMENTAL PROBLEMS OF REACTOR ENGINEERING
- COAL CONVERSION ENVIRONMENTAL EMISSIONS
- WORKSHOPS WITH INDUSTRY RESEARCHERS FOR DATA EXCHANGE
FY 81 ACTIVITIES PROJECTS CHARACTERIZED AS "GOAL-ORIENTED BASIC RESEARCH AND HIGHER RISK,
SPECULATIVE RESEARCH"
(UNIVERSITY RESEARCH REPRESENTS APPROX. 25\% OF ARETD BUDGET)


ORIGINAL PAGE 12

XDAGNA TISSOX \&OC
SURPACE COAL GASIFICATION
GASIFICATIONS SYSTEMS MULTI-TEST FACILITY ORDER LONG LEAD TIME EQUIPMENT)

- SITE TBD
OBJECTIVE
CENTRAI FACILITY WHERE COMPONENTS OF COAL GASIFICATION SYSTEMS CAN BE TESTED AND EVALUATED ON A COMMERCIAL SCALE - CONSTRUCTED IN STAGES TO MEET PRIORITIES OF GASIFICATION DEVELOPMENT PROGRAM - INITIAL PHASE TO INCLUDE 1ST GEA GASIFIER AND ONE OR TWO 2ND GENERATION GASIFIERS - 1ST GEN GASIFIER TO BE EVALUATED PLUS PROVIDE SYNTHESIS GAS OR FUEL GL TO SUPPORT TESTS OF OTHER DCWNSTREAR EQUIPMENT OR PROCESSES TEST ADVANCED GASIFIERS (3RD GEN) AND CLEANUP SYSTEMS, METHANATOR MATERIALS.
- COORDINATION OF TEST PROGRAM TO BE RESPONSIBILITY OF A CONTRACTOR TO EE SELECTED - FOORDINATION OF TEST PROGR BY DOE (FY 79: \$10M, FY80: \$15M mequest TO COMPLETE DETAILED DESIGR AMD


## OPERATIONAL CONCEPT

DOE FOSSIL ENERGY
SURPACE COAL GASIFICATION

[^9]DOE FOSSIL ENERGY
Adyanced Research and Supporting Iechnology
Deyelopment

Program Activities Summary

- Conversion Processes -
DOE FOSSIL EHERGY
ADvanced research and technology develupment

1987W1
ADVANCED RESEARCH AND TECCHOLOGY DEVELUPMENT



DOE FOSSIL_ENERGY
Adyanced Research and Supporting Iechnology
Deyelopment

Program Activities Summary

- Materials and Components -
DOE FOSSI: ENERGY
ADVANCED RESEARCH AND TECHNOLOGY DEVELUPMENT


ADVANCED RESEARCH AND TECHNOLOGY DEVELUPMENT

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& ADVANCED \& \& \& \& \& \\
\hline Paosict llut \& ofscripition \& gimitalion. Itr. ano raincipal investigation (f1) \& Mopt LOCATIOM \& gunaliom \& 0:nore I (000', ) \& \[
\begin{gathered}
\text { at cicatin: } \\
=10
\end{gathered}
\] \\
\hline Technitaves for Velding end Cloubsing \& Motertals and Conponents siwr cladding and metdwelding lechnologles for coal gosifier steels \& ```
Oab RIdge Mational
\(t a b\).
Ont RIdge. IM
P1 - O.P. E dmonds
c..N. Coodinin
``` \& Oet Alden. IM \& 7176 comitnuing \& \$100 \& c.s? \\
\hline Vear-Anslstent Alloys for canl Mandiling Equipment \& Materials ond Components Bevilop mear-resistant alloys for cost trensportation and Pragmentation equipment \& \begin{tabular}{l}
Laurence Eerkeley \\
Lab. \\
Berkeley, CA
\end{tabular} \& Berkeley. Ca \& 1/17 continulng \& 3225 \& (-5) \\
\hline Lom Alloy Steels \& Mutertals and Components Eevelop low-stloy steels for thick wall pressure vessels \& \begin{tabular}{l}
Lewrence Berkeley \\
Lat. \\
Berteler, CA
\end{tabular} \& Derkeler. ca \& 10/X conslnulng \& \$160 \& c-5t \\
\hline Nefrectery tinIngs for Cool cosificetion Equiment \& Meserlals and Componenis Eeteralone elfect of cot gesifler enviromenti on commercially avallable refractory ibniag enteriels \& \begin{tabular}{l}
U.3. Dept. of Ineerlor. Dureau of Mines/Tuscalcose Hetallurgy Mesearch Cencer \\
Tuscalcosa. al
\end{tabular} \& Tuscaloobe. \(M\) \& 1974 . contInulag \& \$350 \& c. 55 \\
\hline Coselings for protecilng internal Components of cool Cosifl: cation Vessels \& \begin{tabular}{l}
Matertals ond Components:- \\
Eestgo end baprove hifhsemperature alioy resistant to otteck in Migh sulfur gestlication atmositheres
\end{tabular} \& \begin{tabular}{l}
Locthest Pale alto Mevearch taborar pories \\
Palo Alio. CA
\end{tabular} \&  \& \[
\left\lvert\, \begin{aligned}
\& 10 / 71 \\
\& 9 / 79
\end{aligned}\right.
\] \& \$303 \& c-56

$c-57$ <br>

\hline Propective Leyers - Alloys \& | maserials ond Conpenents - |
| :--- |
| modir best comercilal alloy to cenleve lamper iffe with migh-remperefere. highpresswe. sulfur-rich geses in gestilicat ten | \& Sandia letor atorifes Albuticerime. \& Albuquer gove. 0 m \& 2/xcontlaulng \& $\$ 160$ \& (-5) <br>

\hline Plent moterlate for the castil:cetien of Coll \& Motertels am Componerts: piovide disie on merertits fur use In cosl sestificetion plonts \& Metal Propersies Conencli. Inc. Mow Vorti., WY \& Mew rork. w \& $$
\begin{aligned}
& 9 / 72- \\
& 12 / 79
\end{aligned}
$$ \& 54.315 \& - $: 9$ <br>

\hline Materists Research for Clem Usillzatime of (, an 1 \& | Melertal, eod Componaries: |
| :--- |
| Revelup equifment ant tivl |
| mellonds fior cual govific.otio... |
|  | \& | Mat limed Dutran ul jumeliords fiollo.. .t..10.s. mo |
| :--- |
|  | \& Gilhershurg. no \& $10 / 17$ cimitinuine \& \$610 \& C-: 1 <br>

\hline
\end{tabular}


DOE FOSSIL EMERGY
advancer research and technology develupment

DOE FOSSIL EHERGY
ADVANCED RESEARCH AND TECHNOLOGY DEVELUPMENT

| Pmosict litit | Otscaspisen | CUNIAMCIOA, CIIP, AMC PaImCIPAL IMvisilcaica ( P 1 ) | $\begin{gathered} \text { ronk } \\ \text { cocasiem } \end{gathered}$ | mantien | OUPCI 1 (e00's) | acifaimei |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Costings for Proceciling Internal Comprinerits of Coal Gasificetion vessels | Macerials and Components Develos plase spray-heat ireatment orucesses for apply ing a corrosion-resistant nickel alloy to the surface of coel gasifler sseel components | Solar Turbines Internatiunal s.en Dlogn. CA | Son Didego. | $\begin{aligned} & 9 / 77- \\ & 9 / 79 \end{aligned}$ | \$201 | ( 14 |
| Sulfidation-Resiscant Alloy for Coal Gasification Service | Materials and Copponenis - <br> Bestgn high-iemperalu:. <br> alloy that wald have In, iroved resistance to attach in higtsulfur coal gasification at muspheres | Lochheed Palo Alto Aesearch Labs. Palo Alto. CA | $\begin{aligned} & \text { Palo Alto, } \\ & \text { CA } \end{aligned}$ | $\begin{aligned} & 1 / 77 \\ & 10 / 70^{-} \end{aligned}$ | \$290 | c-15 |
| Heat Transfer through hefrac-inry-ifned Gasffier Vessel Malis | Materials and Components Provide o computer model to prestict the lepact of he, paramiters on heat flims bll cual qusification vessel | - atielle Columbus Labs. <br> Culumatios. OH | Colimathes. OH | $\begin{aligned} & 6176- \\ & 12878 \end{aligned}$ | \$535 | c-16 |
| Chirimise-Nolybienun steels for Fossil Utility Botler Amplicat Juns | Moterlals ord Cumponents. Eevelop a chremin-aulytidenc. stesi with improved elevited. lemerature strengity arol amofacturlion properties | O.t Wlidyr W.tlicnat $t$ th. <br> Oak Rtaje, fis | Oat Ridyn. IM | $\begin{gathered} 10 / 77- \\ \text { conilinuing } \end{gathered}$ | \$120 | C-11 |
| Eviluation of fractupe foughness of Pressere Vessel steels | Moterlals and Ccmponents. Drirrmim itme eltrat ci ib.. quefating enviroment of cc.al converstom ifsfees on hifliand lam-inmperature priyiertio.. of pressure vessel stecis | Date Ridne Mat Inomil tal. <br> Osk RINe. IM | $\begin{gathered} \text { D.th Pildar } \\ \text { in } \end{gathered}$ | $\begin{array}{\|c\|} 10 / 77- \\ \text { contiouling } \end{array}$ | \$150 | $C-m$ |
| nenegrent and Cob ortimetion of cmal Sclence Tasks | Materlals and Cemements ${ }^{-}$ Assist ine Dirision of Coal Converslandlatifaction and the office of Universliy Acilvieles In coordinetime coel sclence projects | Pitisturght Enerey <br> Iechnoloyy Center Oreceton, Pa <br> 01 - A.B. Sharter, Jr. <br> H.L. Deicofshy | Druceton. | $\begin{aligned} & 195- \\ & \text { cont linelan } \end{aligned}$ | 1800 | C. 9 |
| Feasitiliter of Using a Roteting Fluldized lad for Desulfurlaing Mot Geses | Materlels ane Comemats - <br> Assess the reaplbitisy of a roteting ficidiaet-hed contacilme device centeininy ilarestomemich is msed to desubphurlice mot geses derlved firm cuel condersiben | Oroahtheven Mat lamel $t a b$. UIOn. W | \| Upien. WY | 1935 cont laulong | 82 | c-80 |

# DOE FOSSIL ENERGY 

# Advanced Research and Supportung Technology 

## Deyelopment

Program Activities Summary

- Instrumentation and Controls -
DOE FOSSIL ENERGY
advanced research and technology develuprent



# DOE FOSSIL ENERGY <br> Adyanced Research and Supporting Jechnology <br> Development 

## Program Activities Narratiye Descripilion

- Conversion Processes -

Pittgburgh Energy Technolosy Cencer, Brucetom, PA - Support for 002 contracts on catalytic gasification (ecaversion of coal inte gaccous Euels) was provided in this project. Equipment me designed, assembled and operated. Chenicals that reduce the agslomerating (clustering) propensity of bituinous coals were deternined. Tests were run to verify the catalytic procese undergoing developent at Battelle Memorial Inatitute.

Midland-Ros: Technical Cencer, Toledo, on - An laproved boiler for producing methane was devaloped apecifically for use in coal gasification plants (where coal is converted to seseous producte). A test facility began operating, and a computer simulation was used to compare the theoretical data and experimental results. The project aimed to l) eliminate the need to recycle product gas for temperature control, 2) aake approximately 90 percent of the reaction heat available for producing high-pressure steam, 3) reduce opera:ing costs by elininating recompression and providing high stean quality, and 4) reduce capital costs by combining the methanation part of the process with the already required heat exchangers (devices that enable heat crasfer between two fluide).

Pittsburgh Energy Technology Center, Bruceton, PA - The purpoce of ehis project vas to develop iaproved catalyets for the synchame process. The Synthane process is a coal gasification process (conversion of coal to jaseous products) in wich coal is treated with a steam/oxysen mixture to give a oynthesis gas vith high werhane content suitable for upgrading to pipeline quality (high Beu) gas. Factors which affect stability, selectivicy and activity of zechanation catalysta were deterained. An analysis vas conducted of the deactivation to methane of the Raney nickel catalyat, an alloy of nickel and aluainum favored for converting synthesis gas and produced in the first atages of coel conversion processes.

Pietsburgh Energy Technology Center, Brucecon, PA - Methods for treating vastevater from coal conversion processes (converting cool to liquid or seseoun products) vere developed. The deaign and construction of a vastevater creatment systes iategrated into the coal convaraion process vas compleced. Design capaciey is about one ga:lon per hour.

Pietsburgh Energy Technology Center, Bruceton, PA - The objective of eh:s project vas to evaluate gas purificacion systems which are pocencialiy applicable to the cosi gasification process (conversion of coal to gaseous products). A primary consideracion was sulfur removal from the coal-derived gas. A revien of the literature on gas treatsent systeas vas completed. Gas purification procese performance characteristics and econumic eatimatee were obtained, and data vere compared for several processes.
 gasifisacion (conversion of cosl to gancoue produces) we ede ace en engineering assesmant. The purpose of the otudy me co l) deteralne the technicel teasibiliey and cononic impect of novel procesess, 2) identify pertinenc areas of research, and 3) increase the fundencatal underatanding of exiating gasification processes with etthemetical modeling. Mo or assessment work on the various gasification coscepes was compleced, and research proposals ware prepared.

Morgancoun Enersv Research Cencer, Morrantom, WV - The purpose of this project was to measure the physical and cheaical characteriseics and reactivities of chars produced froo coal cenversion procesees (conversion of coll to liquid or gaseous products), and attempt to ideatify the best end uses for these products. Equipeent for analyzing chars was installed and a geries of experiente begun. Results were compared to published models of char rectivities.

Inscitue of Can Technolory, Chicaso, IL - This projece was an attempt co develop noncatalytic process for the hydropyrolysie of coal (decomposition of coal by heating and adding hydrosenj for the production of fuel gases and high-octan gasoline blending etock. A bench-scale unit was conatructed and experieental work done. seudies were made of eethods tor separating and recovering methane, ethane, and carbon oxides.

Instizute of fas Technolosy, Chicaso, IL - It wes the purpose of
chis project to assese industrial uses of low and nediv-sen geese and :he equipeent adaptations that aight be needed. Low and mediu-stu gas is e product of coal genification and has a 100 heacing value. Eight cypes of bumers were eesed with low and wedium-8tu gases and their performances compered te their pertormence with natural gas. A merual vas prepared co inform users of induetrial burner equipment of the resulte of chis study.

Meosachusetts Inacitute of Technolosy, Ceabridra, M - The objective of this seudy ust to investigate the applicabilicy of the elceteo Eluidized bed (EFB) to the cleanup of particulates from the produets of coal combustion. The EFI conaiges of bed chrough chich a lluid is passed at a speed high enoush for eolid particles co separate aed become freely supported in the fluid. An electric curtent aids ia che separation and resoval of particles. A cest ris is to beceen oper-tionel by fall 1979.


#### Abstract

  gascous fuels froe coel) by obeafaiag cata on peeoible masertere clements and compounds. The feel coel, metar, cat, char, ead Rilear ash of coal conversion mere screened for 60 to 70 trace and eleor elemencs and for several hundred potencially hasardous compounde. Exeannetions are contiauiag.


Redian Corporation, Aupein, IX - Techaical suppore is beine provided to the Division of Coal Coaveraion regarding damenstration and pilot plane projects. Site ouleabilicy and meter avallability repects were provided for two ccal conversion demonetration projecte. Aa environmental review and a socioec cnomic evaluation were prepered for ocher plants. Techaical reviome were ade of interim resulte of conceptual designs for ateamesenerating plats.

The Dow Cheaical Compary, Midland, MI - a critical ovaluation of pertinene lifersture was completed te cevelop tablee of thermonmenic data for compound associated vith coal conversion end cect centroetion procesect. Data are included for boilar ad gan tustime corrosion, sulfur coatrol, and catalyst deactivation. Date will be publiahed quarterly en pert of the foiat dow-lleypale Perce Thermocheaical fables.
 cechaiques were used to otructurally charecteriee ceal ad eolumerefined cosl (a product of the selective transfer of coel ceacelcuents from fimis divided coel particlee ince a solvent). Elcmence were aclysed at conecitumes ibantified. The colvent encrestion process and its products vare compared for bitminous centa an lignite. A detailed report mat prepered.

Aabcosk of Wilcox Compary, Allieace, on - The obluctive of this project mes to develop and demenstrate a electronbeen miliag procedure (eechaique for joining eateriale ia thicin parallel electron beame at low prestures are wedt to produce a highly concentrated heat source) for valding boiler ond prescure veseel asterials of up to 8 inches thick. Additicaal work mat performed to ecquire information, such as determination of desired vacura level, joint fit requiresents, demgnetisacion requiremente, repair techniques, and mechmical properties, relative to the feasibilley of eiectron bean welding for coal geaificecion calce.

Arfonne Mational Laboratory, Argonne, Il - The aim of thie prejort vere $t s$ investigate the corrosion of etructural mentiale used in atrospheric pressure Ruidized bed coal combugtors, to investigate the effect of pollution-reducing measures on the corrosion, and to find an optima! combination of corronion-reaigeane equipant and ainimally corroding pollution-reduring processes. A coal combution cest facilicy was completed and cesting vas initiated by aeens of special air-cooled corrosion probes.

Barelesvilla Enersy Technolory Cencer, Bareleaville, or - The purpose of this project was to obtain enginaering procese design data related to gaseous, liquid, and solid producte of coal conversion processes. Specific tasks perforsed included: correlating the combustability of coal-derived colide and liquide to the grade of the parenc cosl, masuring the solubility of hydrogen and synthetic gas ia process solvente, end chemical charceterisation of key compound imporesat in the procenaing of liquids tarived from coal. Heat generated by combustion and hydrogen oolubility vill be ceasured in semples genersted by the solveat lafined Coal-II Preeece.

Argonne National Laboratory, Argonne, it - The purpose of ehis project vas co study the fuel flexibility potential, energy et! ciency, and econoaic viability of edvenced engine: operating a coal or cual-derived fuele. Enginen studied included Sterling cucle, external combustion Breyton cycle, amall high-afeiciency getea curbines, and coal-uaing dienel cagime. The Sterling syele engine using coal fuels could be competitive vith gat turbines ad diesei engines for comanity use; brayton angines would be comperisive in the iarge sngine earket. Conl-using diecel engimes aight be competitive operatiaf ou cool-derived fuels racher them coal itself.

Argonne National Laboratorv, Argonne, IL - Funding was providet for eechnical support servicea to help ensure the eventual substitution of alternate fuels for petroleum and natural gas. Tasks included evaluation of fuels for various applications, characterization of the combustion of alcernate fuels, developaent of models and quantization of emissions, as well as technical nonitoring of contracts and the evaluation of contract proposals.

Brookhaven National Laboratory, Upton, NY - The goal of this concrace was to find more active catalysts to be used in the conversion of synthecic gas to methanol. Methanol has the potential for use as a coal-derived synthetic fuel or feedstock. A new fatalyst system was developed through a homogeneous analog and research on this plus a literature search explained a new aecheniam for catalyzed synthetic gas reactions.

Ames Laboratory, Mouncain View, CA - The purpose of this project vas to obtain microatructural-chemical infornation, using electron mieroscope techniques, to clarify the nature of sulfur distribution in coal. The forme of sulfur in a broad sampling of coal were analyzed and compared to facilitate their removal, using various purification procedures. The effects of sulfur removal on coel characteristics was assessed, and alternative processes vere investigated. Further experimentation is being conducted to determine more efficient methods of sulfur characterization and removal.

Ames Laboratory, Mountain View, CA - The objective of this project was to develop aethods for reducing aulfur in coal to control the level of gas enissions generated during combustion in complimes with Federal environmerical requirements. Coal and coal-derived materials were gubjected to various desulfurization processes and the effectiveness of each procedure was evaluated. New methodologies for the identification, characterization and separation of sulfur are being developed.

Ames Laboratory, Mountain View. CA - The purpose of this project vas
$\qquad$


C-20
to develop process using sodium carbonate solution to remove sulfir from coal. Nunerous laboratory experinents wre conducted to evaluace the important characteristics of the extraction process and the response of various types of coal to : ce trestment. Developeent of the procedure is being continued to deternine optimum procese conditions and to identify coals that reapond favorably to desulfurization for production of clean coal for direce combuation.

Jet Propulsion Laboratory, Pasadena, CA - The objective of this program was to develop the low-temperature chlorinelyeis proeece foe removal of sulfur from cosl. The effects of various procese conditions on the efficiency of this atiod vere evalusted, and the eftectiveness on various types of coal mes assessed. Leboratory results rere proaising, and further teatige and eodification procedures were conducted to optiaize the desulfurizatioa procese for pilot plant use.

Oak Ridge National Laboratory, Oak lide, TH - The objective of this project uas to develop a process for removing pytitic sulfur and ash frou dry pulverized coal using high-incencity magnetic fielde. This mechod uas developed to provide enviromantally aceeptable fuel ceal for use in otean power plants or coal gasificstion and liquefaction plance. Tests were conducted to identify the controlline precese conditions to maximize separation efficiency. Further tests are being conducted to optimize the procedsre and to deternine the aagnetic separability of various coels.

Ames Laboratory, Mountain View, CA - The objective of this project
wes development of the oil aselomeration (procese of collecting ia a mass) wethod of cleming and recovering finesize cesl so improve separation of coal and iron pyrites and facrease capability for handling fine coal. Laboracory experiments determined that separation was improved aignificantly by chemically precreatiaf eme particles, and suitable operating conditions for both pretreatemt and agslomeration were identified. Development of both procedures i- being contiaued to determine optimu process conditions and to idantify coais that reapond favorably to the method.

Energy Interface Associates, Inc. - The purpose of this project was
to determine the handlins and operatint difficulties of using coal that has forzen into large chunks and slabs. A surver of aines, transfer points, and utilities wae conducted to defiae the mature and extent of the priblems and to idencify and analye potential solutions. Most utiliig plats are not equipped to hamie or thav Erozen cosl, and chemicals that prevent the cordition en be applial to coal at the mines.

## ADVANCD RESEARCK ND SOPHORTIM THCHOLOCT

## Processes

U.S. Burcau of Mines, Washinteon, DC - The purpose of this project was to determine the mont effective and economical method for removing sodive from lignite (a type of coal) by ion exchenge (a chemical reaction used to purify or separace substances). Sodium is the element chiefly responaible for the formation of ash deposits, which foul boiler tubes and decrease efficiency. An extractor mas designed, asseabled, and operated, uaing various testing and analysis procedures to investigate feasibility of the ion axchange process. Excellent results were achieved using this eethod.

Babcock Contractors, Inc., Bruceton. PA - The objective of this project uas to demonstrate a process by which lignite (a type of coal) pellets can be produced with low moisture content and a binder that will provide good aechanical strength and resistance to woisture pick-up, spontaneous ignition, and dusting during handling. The first phase of the study involved laboratory research so determine the variables and test and evaluate the procedures for producing the pellets. Results of these analysea were used in the second phase to produce large quantities of lignite pellets for pilot plant testing and cost atudy.

Iaternational Research and Technolosy Corporation, Mclean, VA - The objective of this project wat to further develop a model baoed a the MPPM, for processing cechnology. The MPPM is analytical tool in the form of an interactive, conversational computer program. Por coal conversion processes, the progran provides an analyst vith rapid, syatematic evaluacicas of echnological developents, policy decisions and eensitivity to uncertainty. The model comprises a data base and a method of deciaion evaluations.

Energy Interface Aesociates, Inc. - The study goel wes to decermine the difficulties in handling frozen coal end what expedient eeasures were adopted et various aites to overcome the probleas. A report was prepared which included the conditions ancountered and remedial action taken. The study is completed end wili be used as a basis for writing a Request For Proposal for a research project aimed at developing cost-effective processes of overconing problems associated with frozen cosl.

Bituminou: Coal Research, Monroeville, PA - A principal objective of non-coal) in coal mining, preparation, transportation, and utilization. Other easka vere to deteraine the effect of coal cleaning on fugitive elemence and to deacribe analytical methods used to deteraine the concentration of selected trace elements in a variety of coals. Resulta of this study indicated that the cleaning of coal significantly reduced many of the constituents considered haraful, with respect to environsental of utilization viespoints.

Anes Laboratory, Mountain Viev, CA - It wee the purpose of ehie project to develop ways of recovering and removing aulfur from finely crushed coal (fines). Proth flocation (separating the elements by bubbling one to the top) and selective oil agglomeration (clustering) were considered. In addition, preparations were made for pelletizing the fines. Construction has begun on a large bench scale system that will demonstrate all chese methods.

Pitcsburgh Energy Technology Center, Bruceton, PA - Research results
from this project provided the laboratory process RED neceseary $t 0$ develop the oxydesulfurization process (chemical removal of sulfur from coal) to pilot plant operations. This process transforms many high-sulfur coals to boiler fuel that meets air quality standards for sulfur oxides. Two independent economic analyses of the process concluded that nxydesulfurization has excellent prospects for comercial development.

General Electric Company, Fairfield, CT - In this etudy, emphase was on providing gas (derived from cosl) that is ufficiently free of particulares to permit turbine operation vithout undue corrosion or ercsion. The clearing should take place at high cemperature and pressure to improve overall system efficiency. In this approach, the usially glassy nature of the particles is capitalized upon by providink glass coated aticky surface to trap particles. A preliminary conceptual design and an economic analysis vere carried out. It was estimated that the "sticky wall" unit would be 25 percent less expensive than other existing systems.

Brookhaven National Laboratory, Upton, NY - Basic procese chenietry
informetion was developed for the regeneration of limestone or lime-based sorbents (substances that take up and hold other substances) used in removing sulfur from combustion and fuel sases in power production cycles. It was found that calciu silicates possess the same sulfur removal capabilities as Green lime hut their regeneration rates are five to ten times higher. Process design and analysis studies are continuing.

Mrgantown Energy Technology Center, Morgantow, wV - The objective
of this project was to investigate fouling and corrosion probleme in coal-fixed boilers by characterizing coal-mineral inceractione diring, the combustion and heat transfer processes. A plugeflow (vapor-liquid flnw in which the gas flows as large plugs) combustor was redegigned and assembled. The role of corrodant compounds was documented.

Gernantom Laboratories, Inc., Philadelphia, Pa - The combustien of
coal-oil-water slurries (tixtures) prepared by five different emulsification (suspension of dispersion) systens mare evaluated. The slurry systems, flat characteristics, and boiler efficiencies were all assessed.

Lawrence Berkeley Laboratory, Berkelev, CA - The purpose of this project was to measure the combustion properties, such as burning races and pollutant formation, of coal that will be important to the design of new combustion systems, the control of combustion processes, and the reduction of pollctant eaiseions. Surning rate and cemperature profile measurements were obtained sor pressed pulverized coal and graphite. The effect of water content in the fuel on burning rate and ash buildup was obeerved. Measuremente for solvent refined coal 'a coal extract derived from the selective transfer of desired coal constituents from finely divided coal particles to asolvent) were aleo made.

Battelle, Columbus Laboratories, Columba, on - it wae the objective
$C=38$
of this study to define the chemistry of carton monozide and
 fuels, experimental data were obtained for predicting flame stabilities and flame lengths of coal-derived gases. Mathematical expressions vere developed for predicting the burning rate of lowand intermediate-Btu gases. The next phase of work included methane in the fuel mixtures.

Oak Ridge National Lahoratory, Oak Ridge, TN - This seudy was an $C-41$ atcerapt to demonstrate the technical feasibility of removins heavy metals and other inorganic materials from dry pulverizd coal using high-intensity aagnets. This process reduces the quantities of esh and sulfur dioxide produced during coal combustion. Separation efficiencies (percentage of impuritiee removed) vere 80 to 85 percent for pyrites (a class of sulfides) and 55 percent for ash by mean: of high-gradient asgnetic aeparator. Several alternate approsches to continuous dry coal magnetic eeparetion equipent designs vere identified for further evaluation and development.

Exxon Research and Enfineering Company, Linden, WJ - This research involved completion of theoretical and experimental atudies on che formation of nitrogen oxides in the stages of coal particle combuation-pyrolyais (decomposition of coal by heating in the absence of oxygen), gas combustion, and char (che solid residue from coal) burnout. Diagnostic equipment was put into operation and theoretical work was initiated. The work was to include a variety of coal: broadly representative of available U.S. coal types.

Aerochea Research Laboratories, Inc, , Princeton, HJ - This
contractor measured concentratione of chanically reactias opecies (atomic nuclei, atome, molecules, or ions) in a turbulent receter. In the reactor, aet consisting of one compound spewn into, olme and reacts with a nearly etationary ourrounding aixture. The concentration measurements were used ac input to the modeling of realiatic conbustors.

Sandia Laboratories, Albuquergue, MA - The combustion propertiee of pulverized coals were beins characterised for evaluation of combustion modifications to ainiaize fouling and polluting gubstances. Coal combustion factors influencing the converaion of sulfur, nitrogen, and mineral matter to pollutants were determimed in a laboratory- acale research progran. High-apeed eincmatography was used to measure particle ignition, devolatilization (removal of volatile matter), and char (solid residue from coal) burn up intervals. Other measurmmente include particle-aise dietribueion, porosity, denoity, and awel'ing.

# DOE FOSSIL ENERGY 

# Adyanced Research and Supporting Iechmology 

Deyelopment

## Program Activiules Narratuye Descripuion

- Materials and Components -

Dabcock and Wilcox Company, Alliance, on - It wat the objective of this project to deternine whether atiactory (heat-resistant metal) lining could be developed for coal gasification (conversion of coal to gaseous fuels) process vessels. Cracking often occurs in this lining during the initial dry-out, heat-up, and cool-down phases. Because this type of lining is considered cheaper, easier to install, lighter in weight, and a better chermal inaulator than brick, the focus of this project was on preventing the lining fore cracking. A machematical model relating time, cemperacure, and shrinkage upon cool-down was developed. The results of this study were usnd to develop refractory specificatione, design and installation guidelines, and operating procedures.

International Harvester, San Diego, CA - The purpose of this project was to evaluate materials and pouder compositions to develop a coating systea suitable for protecting large internal componenta of coal gasifiers from corrosion. Data on coating composition, structure, and application cechniques that could be transferred to the general materials industry were to be provided. Various coated metal alloys were partly immersed in coal char in an atmosphere of flowing seam/hydrogen/carbon dioxide and carbon monoxide with aall amounts of hvdrogen sulfide, methane, and amonia at $980^{\circ} \mathrm{C}$ to test for corrosion.

International Nickel Co., Inc., Suffern, $N Y$ - This contractor
developed and evaluated weld-deposited overlays to provide rasiatance to corrosion and erosion in coal gasification (conversion of coal to gaseous fuels) environments. Weld overlaying deposita a corrosion-resistant layer on substrace or bsse. This circuments che difficulty of fabricating highly corrosion-resiatant alloys, specifically high-chromiun allovs. Three velding processes were used. Upon completion of the velding, the layered materials vere to be exposed to coal gasification conditions.

Batcelle, Columbus Laboratories, Columbus, on - The corrosion behavior of iron- and nickel-base alloys in coal gasificacion (conversion of coal to gaseous fuele) environments was evaluated. A statistical test design was developed on all combinationa of alloys, cemperatures, and oxygen levels. It was found that acales consigting of iron, nickel, and chromium sulfides vere formed. Exposure tione was approximately 1000 hours.

Battelle, Columbus laboratories, Columbus, OH - Data were compiled
on the high-temperature corrosion behavior of metals and alloys used
in generating plants. A handhock was assembled to serve as a source
of data for analysis and prevention of corrosion problems, as e guide for the selection of materials, and as meane of identifying data gaps. Sources used vere reports of work on governeent contracte, technical and ecientific licerature, and private induetry.

Oak Ridee National laboratory, Oak Ride, Th - The merpese of ehis project was to develop methode to ingpect thin procective ceatinge on wetals used in coal procesaing equipment. The purpose of ach inspection is to detect existing failures and conditions that marn of incipient failure. Work on cermic coatinge vas completed, and work was begun on metallic coatinge. Inepection methode include ultrasonics (the use of sound waves above audibility of the huma ear), electric currene, and rediography (X-ray or gean ray photography).

Oak Ridse National Laboratory, Oak Ridre, TM - This research was directed at characterizing the censile and Rracture toughness properties of steel: that will be amployed in the fabrication of large thick-walled pressure vessels. Reating and cooling rates at various thickness depths were messured. additional studies will be made to deternine the effect of aging in air and in hydrogen-rich envit onments.

Lawrence Berkeley Laboratory, Derkeley, CA - Low alloy steela were adapted or developed that can be fabricated into large dianter, thick-vell pressure vessel: for coal geaification (conversion of coal to gaseous fuels) systens. Three tasks have been completed: 1) determining alloy design criteria, 2) developing methods of simulating thick plate material in the laboratory, and 3) characterizing comercial steels. Manganese-molybdenum nickel steels and chromicmomolybdence steels served as the basis for resparch. Future work inclides modifying existing steels to schieve desirad oprergeh and thughnege and developing nav gtaele zuited to eni:e we:: eppl:fet:m.
U.S. Department of the Interior, Bureau of Mines/fuecaloosa Merallurgy Research Center, Tuscaloosa, AL - Resulte of this research decermined the effect of coal gasifier environmente on comercially available refractory (heat-resistant metal) liner materials. Refractory linings must he able to perform (i.e... to reduce heat losses and protect the metal shell from erosion by coal and ash particles) in a hostile environment rich in stean, hydrogen, carbon dioxide, and carbon monoxide, at high temperatures and pressures. Results indicated that an optimun lining would have high aluma content. Evaluation of comercially available liner materials is continuing.

Lockhped Palo Alto Research Laboratories, Sunnvvale, CA - It was the ohjective of this project to deaign a high-temperature alloy that would have improved resiatance to corrosion in high sulfur coal gasification enviroments. It was found that the alloy met contaia aluminum and chromium in balanced proportions in order to form the scale of aluninum oxide that protects it from corrosion. Ading vecriun or hafnium gave the alumina scale reaistance to degradation by cyclic heating and cooling. Long-term protective capability to 4000 hours was assessed, and recommendetions made for future development and production.

Sandia Laboracories, Albuquerque, MA - The opecific objective of chis project wat to modify the best comercial iron-baed ad nickel-based alloy to achieve abstancial improvenent in the life of the alloy. Two test facilities were designed and fahricated for studying candidate alloys under a wide renge of conditions. Design modifications were made to improve temperature uniformicy and gae chemistry. Future focue will be on alloys modified vith titenium.

Metal Properties Council, Inc., New York, Wx - The objective of chie project was to provide data on matale and cermice thich is required for che tesign of coal gatification plante. Maceriale vere ecreened and successful candidates were tested under conditions of gaseoue environment, cemperature, and pressure. Tese autoclaves (vessels constructed of thick-walled seel for carrying out chemical reactions at high teeperature and pressure) were constructed. rests exposed samplemateriais to erosion by particulate matcer and to sorrjsion by preseurized hot geses.

National Bureau of Standards, Gaishersburg, MD - Equipmene end cest
C-59 methods were developed to evaluate the durability of alloys ad refractories (heat- resistant metals) in coal gasification (conversion of coal to gaspous fuels) environments. Various alloye were tested for usceptibility to etrese corronion and cracking inder high temperature and presaure. Under a failure prevention information progran, data base of more than 500 reported operating incidents from coal conversion process plants has been developed. A sumary of failure mode, eaterial, and procese plant was also prepared.
Dactelle, Columus Laboratories, Colmbue, on - Engineering lata an the resigtance of heat-exchanger (a dovice which enablee heat cransfer between two fluids) acteriale to corrosion in a fluidized-bed coal combustor mere obtalined. A coal combustor ia a device for buming coal that uses ate or liquid atrean whose velocity is high enough to flost finely divided solids so that they behave as a fluid. The three parts of the protree vere completed: operation of the fluid-bed combuator facility, conduct of the corrosion/erosion research, and messurement of the velocity of the particulates in the bed. Performance of the materials was evaluated and ainal report was issued.
Argonne National Laboratory, Arsonne, IL - Refractories
(heat-resigtant metals) for coal gasifiers (which convert coal to gaseous fuels) were evaluated and nondestructive evaluation methods were being developed $f$ or coal conversion gystems. These methode will enable prediction of corrosion and erosion rates and determination of the cause of failure of pilot plane componence. The feasibility of using acoustic eaiesion (sound maves) to determine the optimu firing echedules (periods of hish cemperature) was established. Hore than a dosen compenent failures mere analysed and recormendations were issued. The nondestructive cestins progrea eaphasized continued developent of ultrasonic and infrared mear neasurenent oyatem.

Cak Ridge National Laborator, Oak Ridse, TM - The corrosion/eroaion behavior of alloys used in heat exchangers (a device wich allowe heat cransfer between two fluids) was evaluated. Tubing materiale must be able to withstand oxidation and aulfidation (corrosion by sulfides). A 500 -hour surveillance cest was completed. Subsequently, an aditional 1000-hour exposure cest vas conducted. with some of the tubes exposed for 1500 hours. The 1500 -hour tubes unre examined by atudy of the otructure of the metale, x-ray diffraction, and aicroprobe analysis (inducing radiation in ainute area of material so that the composition may be decermined from the estasion spectrua).

Mechanical Technology incorporated, Lachen, MY - Engineerine oupport
services are being provided for the performance of selected taske assigned by the DOE Compnents Branch. A revieu and evaluation mes conducepd of failure, aintenance, and operability data on comprnents used in pilot plant in South Dakota. Other taske include correction of chronic aaincenance problens in mechenical equipment, analytical design audien, and recomendetions for improved apecification writing. Machinery performance historiet collected under this program vill be ueeful for selecting and aaintaining equipaent $\mathcal{l}$ or future plante.

Southern Research ingsitute, Birminghen, AL - The objective of this project wat to ansess the otate of the art of construction of large centrifural oxyzen compresscre. Test procedures mere designed to simulate oxygen conditions and principal events that can lead to fires. Twenty materials were tested at 1000 pai oxygen pressure. Aluminum was found to ignite at below 5000\%, irons and carbon stcels at $500^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$, and copper alluys between $1000^{\circ} \mathrm{F}$ and $1200^{\circ} \mathrm{F}$.

Morgantown Energy Research Center, Mortantown, WV - Long-life values for handing solids in cosl conversion reactors (devices for producing liquid or gaseous fuels from coal) were beveloped. Comercially available valvee have been surveyed and siateen selected for tasting. A otatistical experiment dealgn has been completed. Both ntatic and dynmic test condicione were used. a workshop to bring together eeabers of the valve manufacturing industry and Goverment and industry parsoancel working on developaent of componente for conl conversion processes we plemant.

Fairchild Stratos Division, Manhatean Beach, CA - The purpose of this project wes to develop aset of valves suitable for use in high-Btu coal gasification systema (systens for converting coal to high-quality gaseous fuels). The valves vere to operate at 1800 pai and at remperatures up to $2000^{\circ} \mathrm{F}$ with media consisting of gaseous, cual, char, and slurry (a mixture of ineoluble macter). Conatruecion of a prototype valve vas completed and feasibility of the design demonstrated. The 8 -inch valves are being fabricated aed tested under simulated coal gasification conditions.

| -67 |  |
| :---: | :---: |
|  |  |
| developing, testing and evaluating materials that have abrasion, athesion, and erosion resistance to be used in critical valves of |  |
|  |  |
| coal gasification systems (aystems which convert coal to gaseous |  |
| fuels). An elevated temperature erosion teating machine was built |  |
| in which sample materials are blasted with a gas propelled atram o alumina powder to create erosion conditions. Further emphasis was heing placed on delinesting the properties of promising materials. |  |
|  |  |
|  |  |
| nerai Electric Company, Washington, $D$ C - Research performed |  |
|  |  |
| corrosion/erosion decerioration of gas turbine materials exposed to |  |
| the extaurt gas from a presturized fluidized-bed combustor. Such a |  |
| combustor is . device for buming coal which uses a gas or liquid |  |
| ctrest whose velociey is high enough to float finely divided colide |  |
| so that they behave al . fluid. Corrosion cesting of selected |  |
| alloye accumulated about 2000 hours under laboratory simulation of |  |
|  |  |


#### Abstract

Mechanical Technolorg Incorgeratel, Lethen in - The efficianey of - Eechanical cerodymane cevice calle e efelecentrifue use deacnstrated fe use in controlied separation of fim particulate atter from a hot, preseurised sae strean. Mish eftielency clemup of hot, preseurized sas in a continuoue and relieble manner is essential to fossil energ utilisaticn uch at the cencmic uee of low-btu gas. A laboratory-scale cyclocentrifuge mas amufactured and particulate masuring scheme deviocd to provise aceurate test resulta in the particle de reage of $1 / 2$ co 10 aicrone.


Margantoun Enersy Technolosy Center (NLTC), Morrantoun, WV - The
pirpose of this project vas co develop and cest ateamedried coal slurry fsuspension of puiverised solid in a liquid) feed syetea. This system is used to inject dry, crushed coal into e ligh preesure proces. The system offers the potencial for eliminating croublesome high preselice valve syetem on coal faed lines. West Virifale University vas contracted to design ecearsiurpy nossles for the METC dryer, and aszie teating facility mas assembled in the MITC pilot plant. A lift dryer aimulation otuly ade by C.F. Brau ad Co. was reviewed and che computer progren was adapted for predicting operatinz parmancers of the METC aysten.

Oak Ridee National Lahoratory, Oak Ridse, TH - Surveys vere conducted to identify the present ability of industry to upply the equipment needed for coal conversion demonstration plants. The surveys included rotating componencs, valves, hot sas cleanup devices, and heat recovery equipment. The surveys mere then expanded en include operating experience and reliability of equipaent. Costs for available and currently unavallable equipment ware determined. In addition, the contractor decermined research and development needs for production of advanced design equipmene for various unit operations of importance to the Department of Energy's coal conversion program.

Oak Ridse National Laboratory (OnmL), Oak Ridre, IN - It vas the objective of this project to essese the equipment requiremente for enal convergion demonstration plante designed under DoE-induetry contracts. Critical components and mans vere developed for evaluation of the components prior to planc otartup. The project provided basis for the ldentification of troublesome componerce that would decrease otart-up problem and prevent unecheduled shutdom of the plant. A eludy of the fecility requiremente for testing aquipment was completed in cooperacion with the Stesrns-Rogere Enginecring Company, Denver, Colorado. The study indicated that cesting way feasible and ueful but costy. OnNL. assisted by TMW Energy Syatees, initiaced work wich four demonetration plent eubcontractore.

Congelidated Controls. El Sefundo, CA - This coneractor designed, minufactured. cested, and asapssed f- and 12 -inch valves capable of withstanding the hostile operating condicions found in coal pasification plants. Reliable data were produced for che desifn and production of coal gas valves suitable for comercialization. an additional proiret objective wan the transfer of technology to private indus:', Preliminary design etudies vere conducted on valve which was incorporated with high aluina ceramic and comercial refraceory perts for longer life and high resistance so corrosion.

Solar Purhines Internacional, San Diero, CA - The objective of chie priject vas to develop plasme thot, electricaliy-charged ges) spray-heat trestment processes for applying a corrosion-resiscant nickel alloy to the surface of coal gasifier seel components. The alloy hould jossess resiatance to corrosion from normal gesifier chemicals and temperacures such ae thoee temerated from hot solid char. Testing of the alloy under veriety of conditione was undertaken.

Lockheed Palo Alto Research Laboratories, Palo Alto, CA - The objective of this project was co desition high-temperature alloy that would have iaproved resiatance to attack in high-aulfur coal gasification atmospheres, compared vith comercially available stainless ateel and super alloys. The alloy would improve procese developaent, plane design factors, operational coaditions and reliability of coal enoification plants. The comercial production of chis alloy was studied.

Aatelle, Columbus Lahoratories, Columbus, OH - The objective of this project vas to provite compucer model to predict the iapact of key parameters on heat flows in coal gasification vescel, in order co develop cost-effective and reliable vessel design. Specifical:y, the model will incorporate material composition, grometric considerations, gas composition, pressure, teaperature, flows and materials decmposition parameters into ci:e design function.

Oak Rider Nacional Laboratory, Oak Ridee, TN - The objective of this

C-73

C-74

C-75

C-76

C-77

C-78

Oak Ridge National Laboracory, Oak Ride, IN - The ohjective of this project was to decernine the effect of the operating environment of cos! conversion ayotem on the high-and low-temperature propertes of preseure vesecl etcele. In addicion, acudy of steel etrese vae implemented.

Pittsburgh Energy Technolosy Center, Bruceton, PA - The purpoee of this project was to assist the Division of Coal Conversion/higuefection and the Office of University Activities in coordinating coal science projects. Responsibilities included assembling review boards, organizing review meetings, evaluating proposals, and recomending funding levels. Projects were assigned to the Technology Center and reviewed by representatives from each of the coordinating offices. The program is expected to continue and to expand further into the areas of coal conversion (the reduction of coal to liquid and gaseous forms suitable as substitutes for natural gas and petroleum fuels) and end use.

Brookhaven National Lahoratory, Upton, $N X$ - The purpose of this projec $\begin{gathered}\text { was to assess the fessibility of a rotating fluidized-bed }\end{gathered}$ contacting device containing limestone, which is used to desulphurize hot combustion gases derived fron conl combustion. The device was assembled and test runs were made at roon temperature. High temperature components have been designed and are being assembled for testing.

Argonne National Laboratory, Argonne, IL - The purpose of this project was to develop lou-cost plastic heat exchangers to be used to conserve low-temperature waste heat. Tasks included celecting and modifying plastics, and innovating heat exchanger component production processes and designe. Som of the designe, performence, and costs vere identified, potential suppliers of rav plastics mere found, and the experiences of two comercial suppliers of plastic heat exchangers vere evaluated.

Argonne National Laboratory, Argonne, IL - The purpose of this project was to test segmentelly baffled shell-and-tube heat exchangess and to quantify tube vibration data, in order to avoid vater flow vibration problems in the finished product. A test heat exchanger was selected and about 500 tuhes were ordered. The firat cest was planned, with the tubes to be arranged in an equilateral trianguiar array.

Westinghouse Electric Corporstion, Pittsburgh, PA. The purpose of this progra was to evaluace and optimize the resistance of this program was to evaluace and optimize the resistance co hydrogen and temper (harden and strengthen) embrittement susceptibility of chromium-molybdenum steels for use as atructural materials in coal conversion pressure vessels. Initially, the degradation of properties of an Anerican Perroleun Insticute material from embrictlement effects was defined. Currently, the focus of the research is concentrated on the identification of composicions and microstructures with maximum freedon from embritelement effect.


## DOE FOSSIL ENERGY

Advanced Research and Supporting Iechnology
Deyelopment

## Program Activiules Narratuye Descripuion

- Instrumentation and Controls -


#### Abstract

Miduest Research Insticute, Ransas Cicy, mo - Data from this research program were used to identify gaseous alkali metals that may contribute to corrosion. Direct mase spectrometric probes were also developed for sampling such material from small-scale coal combustors. Sucn a systen was desisned, constructed, and cested for use with the combutors at the Morgantom Energy Research Center.


Seience Applications, Inc., La Jolla, CA - The purpose of this program was to design, fabricate, and test two concentration sensors, used for accurate measurement of coal/refuse/uater concentrations in hydraulic cransport pipelines. A sensor for a 6-inch diameter pipeline was developed, cested, and modified to improve performance. Reaults were satiofactory, and further testing and developaent of both 6 - and 18 -inch diameter pipeline concentration sensors was conducted.

Yorgantown Energy Technology Center, Morgantown, WV - A sulfur
monitor was sent to England in exchange for one of England's ash monitors to be tested with U.S. coal. Problems were encountered with the British ash meter hecause of differing applications. The British use the meter to help blend dry, high-ash coal; its use in the U.S. is with clean, typically wet, lowash coal. Measurements by the ash meter were to be compared to conventional analyses.

Morgantown Energy Technology Center, Morgantown, WV - The objective of this project was to develop etechnique for direct determination of the composition of coal minerals as a basis for continuous monitoring of the heat value of coal. The information produced is useful for quality control and for increasing thermal efficiencies of pover plants. The information was to be associated with the testing of the british ash monitor.

Pietsburgh Energy Technology Center, Aruceton, PA - Research performed during this project was an offort to deduce the mechmisme by which catalysts deactivate after a period of use. Emphasis was placed on catalysts used in the direct conversion of coal to environmentally acceptable liquid fuels. Factors considered vere the effects of compounds adsorbed on the surface of such catalysts and the effect of promoters (chemicals which are themselves feeble catalyats, but which grestly increase the ectivity of given =ata:yge).

Ames Laboratory, Mouncain View, CA - Inserumentacion for deterainias the amount of sodiu and potasiu in cleaned low-leu gan derived from coal was designed and built during this progran. The ultimate objective was the analysis of hot uncleaned gas. Turbine failure is related co sodium and pocassiun in the gas gtream. The Morgantom Energy Research Center is building a special "elean roon" to house the instrumentation, and sodium and potassiun seasuresents will begin upon its completion.
X. SUMMARY OF UNIVERSITIES

PARTICIPATING IN COAL RESEARCH
(DOE AGREEMENTS AS OF JANUARY 1, 1980)

Amherst College
Arizona State University
Auburn University
Boston University
Brandeis University
Brigham Young University
Brown University
California Institute of Technology
California State University (Fullerton)
Carnegie Mellon University
Case Western Reserve University
Colorado School of Mines
Colorado State University
Columbia University
Cornell University
Dartmouth College
Denison University
Drexel University
Duke University
Florida State University
George Washington University
Georgetown University
Georgia Institute of Technology
Harvard University
Howard University
Illinois Benedictine College
Illinois Institute of Technology
Illinois State University
Iowa State University
Johns Hopkins University
Kansas State University
Kent State University
Lehigh University
Louisiana State University
Loyola University (Chicago)
Marquette University
Massachusetts Institute of Technology
Michigan State University
Michigan Technological University
Middleburg College
Mississippi State University
Montana State University
Mt. Holyoke College

New York Univeraity
New York Univ. - Medical College
Niagara Univeraity
North Carolina State University
Northeastern University
Northern Illinois University Oakland University (Michigan)
Ohio University
Ohio State Research Foundation Oklahoma State University
Oregon College of Education
Oregon State University
Pennsylvania State University
Princeton University
Purdue Research Foundation
Rensselaer Polytechnic Institute
Rice University
Rutgers University
Stanford University
State Univ, of New York Research
Foundation (New York)
Syracuse University
Temple University
Texas A\&M University
Thomas Jefferson University
Tufts University
University of Alabama
University of Alaska
University of Arizona
University of Califorria (Berkeley)
University of Chicago
University of Cincinnati
University of Colorado
University of Connecticut
University of Dayton
University of Delaware
University of Denver
University of Florida
University of Georgia
University of Hawail
University of Houston
University of Illinols
University of Indiana

## COLLEGES AND UNIVERSITLES

(PERPORMING ENERGY RED FOR DOE AS OF JANUARY 1, 1980)

University of Iowe
University of Kanases University of Maine University of Maryland University of Massachusetts University of Miami (Florida) University of Michigan University of Minnesota University of Missouri University of Montana University of Nebraska University of Nevada University of New Hampshire University of New Mexico University of North Carolina University of Notre Dame University of Oklahoma University of Oregon University of Pennsylvania University of Pittsburgh University of Rhode IsIand University of Rochester

Univeraity of Southern California University of Temasese
University of Texas
University of Utah
University of Vermont
University of Virginia
University of Washington
University of West Virginia
University of Wisconsin (Madison)
University of Wisconsin (Milwaukee)
University of Wisconsin (Whitewater)
University of Wyoming
Vassar College
Virginia Polytechnic Institute and State University
Washington State University
Washington University (St. Louis)
Wayne State University
Wesleyan University (Connecticut)
William College
Wright State Univeraity
Yale
XI. WEST GERMAN COAL GASIFICATION RESEARCH AND DEVELOPMENT

SRS
MOST PROJECTS SPONSORED BY GERMAN GOVERNMENT

## MAIN PROJECTS

## LURGI

texaco
SAARBERG/OTTO
SHELL-KOPPERS
WINRLER
KEY PROBLEMS

- materials problems in all process steps except coal preparation - REFRACTORY PROBLEMS IN THE GASIFICATION STEP - OTHER PROBLEMS SUCH AS SOLIDS PILRERS "THE GERMAN DEVELOPING COMPANIES ARE CONVINCED TO SOLVE MOST MATERIAL PROBLEMS BY CHOOSING ALIOYS AND REFRACTORY MATERIAIS. which are today available on the market"
XII. PROBLEMS FACING THE COAL CONVERSION INDUSTRY
- PROCESS DEVELOPERS
$\begin{array}{lll}\text { - Exxon } & \text { - IGT } & \text { - Koppers } \\ \text { - Shell } & \text { - Rockwell } & \text { - Lurgi } \\ \text { - Texaco } & \text { - Westinghouse } & \text { - Moble }\end{array}$
- ARCHITECTURAL AND ENGINEERING FIRMS



## ENGINEERS

Construction
Industrial
Environmental



- Maintenance Mechanics 11

SKILLED CRAFTSMEN
SKILLED CRAFTSMEN

$$
\begin{aligned}
& \text { - Electricians } \\
& \text { - Iron Workers } \\
& \text { - Concrete Finishers }
\end{aligned}
$$

- Pipefitters
- Welders
- Boilermakers
PRORIEMS FACING THE COAL CONYERSION LNDUSTRY
OVER THE NEAR TERM FIRST GENERATION PROCESSES WOULD HAVE TO BE USED TO MAXIMIZE RELIABILITY
- LIMITATIONS MUST BE RECOGNIZED AND WORK AROUNDS INCORPORATED INTO PIANT DESIGNS - SINGLE/DOUBLE/MULTISTREAM UNITS (IN CONTRAST WITH MODERN SINGLE-STREAM PETROCHEMICAL PLANTS)
- USE OF FEWER STREAMS WOULD REQUIRE SIZE SCALEUP BEYOND RANGE OF PROVEN EQUIPMENT
- LOW RELIABILITY OF EQUIPMENT, COMPONENTS, MATERIALS
- CAPABILITY FOR STABLE OPERATION WITH MAJOR UNITS DOWN TO AVOID COMPLETE PLANT
SKUTDOWN (E.G. PROBLEMS WITH GASIFIERS, BOILERS, COAL MILLS, GAS COMPRESSORS, ETC.)
MNOR SYSTEM/EQUIPMENT/COMPONENT DEFICIENCY AREAS
- PRESSURE LET-DOWN DEVICES AND VALVES
- NO SATISFACTORY VALVES TO WITHSTAND THE COMBINATION OF TWO OR THREE PHASE
GAS-SOLID-LIQUID FLOWS, HIGH PRESSURE DROP, AND HIGH TEMPERATURE HAVE BEEA DEVELOPED
- "harder materials" do not necessarily increase life-new designs are meeded LOCR HOPPERS
- LOCX hOPPERS ARE RUGGED AND RELIABLE bUT ARE ALSO hIGH MAINTENANCE ITEMS
- LOCK hOPPERS ARE NOT AVAILABLE TO PROVIDE THE LARGE THROUGHPUTS REOGIRED
- ARE CAPABLE OF A PRESSURE DIFFERENTIAL CF ABOUT 500 PSI - FOR HIGHER PRESSURE have to be controllled by a complicated automatic control systry
PROBIEMS FACIAG THE COAL COHVERSIOH LNDUSTRY
MAJOR SYSTEM/EQUIPMENT/COMPONENT DEFICIENCY AREAS (CONT'D)


## - COAL SLURRY PUMPS

O SLURRY CONCENTRATIONS GREATER THAN 40 WT. 3 SOLIDS REQUIRE RECIPROCATING

- A HIGH CAPACITY, HIGH PRESSURE, MULTISTAGE CENTRIFUGAL PUMP IF DEVELOPED
 LONER COST
- CENTRIFUGAL PUMPS ARE LIMITED TO ABOUT 600-800 PSIG WITH MAXIMUM AVAILABLE PRESSURE PER STAGE OF ABOUT 100 PSI (TECHNOLOGY IMPROVEMENTS NEEDED)
- ONE YEAR CONTINUOUS OPERATION CFNTRIFUGAL PUNPLIYE IS NOT AVAILABLE AT PRESENT
- MATERIALS EROSION/CORROSION IS PROBLEM WITH ALL SLURRY PUNIPS OXYGEN COMPRESSORS
O LIMITED BY DISCHARGE PRESSURES OF ABOUT 600 PSIA AND CAPACITY OF ABOUT 2600 TPD
- DICTATES MULTIPLE UNITS KITH REQUIRED ADJACENT CONTROL SYSTEMS \& CORPONENTS IMSTRUNLENTATION NND CONTRROLS
O aVAILABLE EQUIPPEENT HAS HIGH MAINTEANANCE (OR REPLACEMENT) REOUTREMEDTS
- MUCH OF REQUIREL CONTROLS INSTRUMENTATION DO NOT EXIST
- MASS FLOW RATE :- AIXED-PHASE PROCESS STREAMS
- ON LINE COMPOSJ: AT $r^{\text {- TTORING }}$
- LEVELS OF PLUIDI " EEE_
- TEMPERATURE IN F GENE GELS AND ON REACTOR WALLS
XIII. ASSESSMENT OF COAL CONVERSYON INDUSTRY CAPABILITY
ASSESSMENT OF COE OANERSIOM INDUSTRY CAPARILITY
INDUSTRY ALONE CANNOT GEAR UP SUBSTANTIAL NEW SYN FUEL CAPACITY RAPIDLY ON ITS OWN BECAUSE OF HUGE CAPITAL INVESTMENTS REQUIRED MOST CONSTRUC. ION INDUSTRY EXECUTIVES INDICATE CAPABILITY EXISTS TO MEET PRESIDENT CARTER'S GOALS ("FOR ANY OF THE BIG U. S. CONSTRUCTION COMPANIES, BUILDING V.P. "^ .. JAMES A. FINNERMAN, EQUIPMENT A,AILABILITY/OBTAINABILITY RECOGNIZED AS A POTENTIAL PROBLEM
- SHORT SUPPLY OF DIGTILIATION TOWERS, HEAT EXCHANGERS, CORPRESSORS. LARGE PUMPS
THICK-WALLED PRESSURE VESSELS (SIMILAR TO NUCLEAR INDUSTRY WHEN ORDERS INCREASED
RAPIDLY DURING EARLY $1970^{\prime} S$ AND SUPPLIERS NOT ABLE TO PRODUCE ENOUGH PRESSURF VESSELS)
- STUDIES INDICATE SHORTAGES COULD BE OVERCOME BY GIVING NECESSARY TIMELY INCENTIVES TO
INDUSTRY
AVAILABILITY OF CRITICAL MATERIALS SUCH AS COBALT, NICKEL, MOLYBDENUM NOT CONSIDERED A
BARRER (CHROMIUM COULD BE A PROBLEM BECAUSE IT IS CURRENTLY IMPORTED AND DEMAND COULD
REACH 7\& OF TOTAL NATIONAL DEMAND) EQUIPMENT A,AILABILITY/OBTAINABILITY RECOGNIZED AS A POTENTIAL PROBLEM
- SHORT SUPPLY OF DIGTILLATION TOWERS, HEAT EXCHANGERS, COAPRESSORS. LARGE PUNPS
THICK-WALLED PRESSURE VESSELS (SIMILAR TO NUCLEAR INDUSTRY WHEN ORDERS INCREASED
RAPIDLY DURING EARLY $1970^{\prime} S$ AND SUPPLIERS NOT ABLE TO PRODUCE ENOUGH PRESSURP VESSELS)
- STUDIES INDICATE SHORTAGES COULD SE OVERCOME BY GIVING NECESSARY TIMELY INCENTIVES TO
INDUSTRY
AVAILABILITY OF CRITICAL MATERIALS SUCH AS COBALT, NICKEL, MOLYBDENUM NOT CONSIDERED A
BARRER (CHROMIUM COULD BE A PROBLEM BECAUSE IT IS CURRENTLY IMPORTED AND DEMAND COULD
REACH 7\& OF TOTAL NATIONAL DEMAND) EQUIPMENT A,AILABILITY/OBTAINABILITY RECOGNIZED AS A POTENTIAL PROBLEM
- SHORT SUPPLY OF DIGTILLATION TOWERS, HEAT EXCHANGERS, COAPRESSORS. LARGE PUNPS
THICK-WALLED PRESSURE VESSELS (SIMILAR TO NUCLEAR INDUSTRY WHEN ORDERS INCREASED
RAPIDLY DURING EARLY $1970^{\prime} S$ AND SUPPLIERS NOT ABLE TO PRODUCE ENOUGH PRESSURP VESSELS)
- STUDIES INDICATE SHORTAGES COULD SE OVERCOME BY GIVING NECESSARY TIMELY INCENTIVES TO
INDUSTRY
AVAILABILITY OF CRITICAL MATERIALS SUCH AS COBALT, NICKEL, MOLYBDENUM NOT CONSIDERED A
BARRER (CHROMIUM COULD BE A PROBLEM BECAUSE IT IS CURRENTLY IMPORTED AND DEMAND COULD
REACH 7\& OF TOTAL NATIONAL DEMAND) EQUIPMENT A,AILABILITY/OBTAINABILITY RECOGNIZED AS A POTENTIAL PROBLEM
- SHORT SUPPLY OF DIGTILLATION TOWERS, HEAT EXCHANGERS, COAPRESSORS. LARGE PUNPS
THICK-WALLED PRESSURE VESSELS (SIMILAR TO NUCLEAR INDUSTRY WHEN ORDERS INCREASED
RAPIDLY DURING EARLY $1970^{\prime} S$ AND SUPPLIERS NOT ABLE TO PRODUCE ENOUGH PRESSURP VESSELS)
- STUDIES INDICATE SHORTAGES COULD SE OVERCOME BY GIVING NECESSARY TIMELY INCENTIVES TO
INDUSTRY
AVAILABILITY OF CRITICAL MATERIALS SUCH AS COBALT, NICKEL, MOLYBDENUM NOT CONSIDERED A
BARRER (CHROMIUM COULD BE A PROBLEM BECAUSE IT IS CURRENTLY IMPORTED AND DEMAND COULD
REACH 7\& OF TOTAL NATIONAL DEMAND) EQUIPMENT A,AILABILITY/OBTAINABILITY RECOGNIZED AS A POTENTIAL PROBLEM
- SHORT SUPPLY OF DIGTILLATION TOWERS, HEAT EXCHANGERS, COAPRESSORS. LARGE PUNPS
THICK-WALLED PRESSURE VESSELS (SIMILAR TO NUCLEAR INDUSTRY WHEN ORDERS INCREASED
RAPIDLY DURING EARLY $1970^{\prime} S$ AND SUPPLIERS NOT ABLE TO PRODUCE ENOUGH PRESSURP VESSELS)
- STUDIES INDICATE SHORTAGES COULD SE OVERCOME BY GIVING NECESSARY TIMELY INCENTIVES TO
INDUSTRY
AVAILABILITY OF CRITICAL MATERIALS SUCH AS COBALT, NICKEL, MOLYBDENUM NOT CONSIDERED A
BARRER (CHROMIUM COULD BE A PROBLEM BECAUSE IT IS CURRENTLY IMPORTED AND DEMAND COULD
REACH 7\& OF TOTAL NATIONAL DEMAND) EQUIPMENT A,AILABILITY/OBTAINABILITY RECOGNIZED AS A POTENTIAL PROBLEM
- SHORT SUPPLY OF DIGTILLATION TOWERS, HEAT EXCHANGERS, COAPRESSORS. LARGE PUNPS
THICK-WALLED PRESSURE VESSELS (SIMILAR TO NUCLEAR INDUSTRY WHEN ORDERS INCREASED
RAPIDLY DURING EARLY $1970^{\prime} S$ AND SUPPLIERS NOT ABLE TO PRODUCE ENOUGH PRESSURP VESSELS)
- STUDIES INDICATE SHORTAGES COULD SE OVERCOME BY GIVING NECESSARY TIMELY INCENTIVES TO
INDUSTRY
AVAILABILITY OF CRITICAL MATERIALS SUCH AS COBALT, NICKEL, MOLYBDENUM NOT CONSIDERED A
BARRER (CHROMIUM COULD BE A PROBLEM BECAUSE IT IS CURRENTLY IMPORTED AND DEMAND COULD
REACH 7\& OF TOTAL NATIONAL DEMAND) PULLMAN KE._.LOGG)
MINING INDUST RY HAS EXPANSION CAPABILITY TO MEET PRODUCTION REQUIREMENTS PER UNIT OF CAPACITY THAN COMPARABLE REFINERIES
- TO MEET COAL IIQUIDS GOALS WILL REQUIRE ADDITIONAL 1300 ChE'S BY 1984 OR A 65 IECREASE - TO MEET COAL LIQUIDS GOALS WILL REQUIRE ADDITIONAL 1300 ChE'S BY 1984 OR A 65 IECREASE SYN FUELS PROCESSES REQUIRE SIGNIFICANTLY MORE ENGINEERING DESIGN MANPOWER GROWTH IN CHEMICAL IETROCHEMICAL, ENGINEERING TALENT GREATEST RISK IDENTIFIED WITH OBTAINING REQUIRED EQUIPMENT PERFORMANCE AND/OR SCALE UP

INDUSTRY RECOGNIZES PERFORMANCE RISK: INVOLVED IN USING COMMFRCIALLY AVAILABLE EQUIPMENT TO SUPPORT COMMERCIALIZATION EFFORTS - SIGNIFICANT DEVELOPMENT EFFORTS REQUIRED FOR SOME EQUIPMENT - INDECISION OVER WHETHER TO COMMERCIALIZE FIRST OR SECOND GENERATION TECHNOLOGY IS A BARRIER TO COMMERCIALIZATICN IOPPOSED BY SOME COMPANIES WHICH ARE DEVELOPING SECOND GENERATION PROCESSES E.G. GULF)

INDUSTRY IS NUT PRESENTLY MOTIVATED TO PERFORM THE NEEDED SYSTEMS, COMPONENTS,
INSTRUMENTATION DEVELOPMENT REQUIRED FOR VIABLE LARGE SCALE CCAL CONVERSION IN U. S. - LARGE NUMBER OF PROCESSES (WITH UNIQUE OPERATING CONDITIONS ASSOCIATED VITH EACH) UNDER DEVELOPMENT

- COMMERCIAL MARKET FOR IMPROVED PRODUCTS (E.G. IMPROVED VALVES, SEALS, PUMPS, COMPRESSORS, MATERIALS, ETC.) DOES NOT EXIST

COAL CONVERSION INDUSTRY DOES NOT HAVE THE ESTABLISHED INFRASTRUCTURE FOR RAPID COAL CONVERSION IMPLEMENTATION MANY LARGE FIRMS HAVE EXTENSIVE PETROLEUM REFINING FXPERIENCE BUT LIMITED SYN PUELS BACKGROUND HAVE ATTEMDTED TO ADAPT PETROLEUM RELATED EQUIPMENT AND SYSTEMS TO COAL CONVERSION DO NOT HAVE BROAD TECHNICAL EXPERTISE BASE NECESSARY TO SOLVE ALL DEVELOPMENT PROBLEMS INDUSTRY WILL NOT INVEST THE NECESSARY AMOUNTS OF THEIR OWN R\&D $\$$ 'S OVFR THE NEAR TERM MARKET WILL HAVE TO DEVELOP FIRST

PROFITABILITY POTENTIAL WILL HAVE TO BE QUANTIFIABLE
CURRENT SITUATION SOMEWHAT ANALOGIOUS TO EARLY HISTORY OF AVIATION AND AEROSPACE INDUSTRY CLEAR NEED FOR GOVERNMENT TO TAKE LEAD IN DEVELOPING IMPROVED EQUIPMENT FOR COAL GOVERNMENT (WITH FOCUSED R\&D PROGRAMS) WORKING WITH INDUSTRY AS SIGNIFICANTLY INCREASE THE RATE, QUANTITY, AND QUALITY OF HARDWARE DEVELOPMENT
XIV. ODSERVATIONS AND SUMYARY
MATERIALS AND EQUIPMENT FOR COAL CONVERSION

- MULTIPHASE FLOWS PRODUCE UNIQUE ENVIRONMENT FOR CUMMERCIAL EQUIPMFNT (UNLIRE PETROLEUM processing) and has produced service life of near instant failure to hours - much of the equipment that has been tested has failed
- toughest problems are in process control 3THN IST GENERATION
- zive and 3rd generation processes typically operate at high pressures and temperatures
$: \overline{S N}$
promotes improved efficiency and economy
SEvere conditions producf greater erosion and corrosion (mainly valves, pumps
and seals)
SEvere conditions producf greater erosion and corrosion (mainly valves, pumps
and seals)

OBSERVA:

pressure letdown
- flow control valves
- mechanics of three-phase flow not understood
valves suffer high velocity of particles and surface fatigue due to flashing of gases
hydrogen embrittlement of metal also a problem
valve success so far has been by trial and error
efforts to develop equipment which will withstand these environments has been haphazard to date
companies participating in coal conversion projects are ordering duplicates of failure-prone units (with resulting high cost, reduced reliability, etc.) exchanging information on equipment is difficult firms are not eager to publicize their problems
 -都 -
MATERIALS AND EQUIPMENT FOR COAL CONVERSION
OBSERVATIONS:
- pump wear is major problem
- EXXON (EDS) USING IMPELLERS AND CASING LININGS MADE OF HARD IRON (SELECTIVE
- LUMM/REPLACEMENT)
- ANOTS USED IMPELLERS AND LININGS OF TUNGSTEN CARBIDE
- MAPROACH (SRCII) IS PROCESS-DESIGN TRADEOFFS
- CONCERN IS NOT SHUTTING PROCESS DOWN, IN GENERAL, STEADY STATE CONDITIONS
- VALVE AND PUMP MANUFACTURERS HAVE NOT MADE CONCERTED EFFORTS TO DEAL WITH COAL CONVERSION PROBLEMS
- U. S. HAS NOT COMMITTED TO A SPECIFIC TECHNOLOGY
- reluctance to invest to develop new designs
- SOME PROGRESS HAS BEEN MADE (ESPECIALLY THOSE SIMILAR TO OIL-PRODUCING
TECHNOLOGY)
- Skirting problews with failing valves and pumps will continue to be rule dUPLICATION hILL REMAIN
heavier sparing in crucial areas (espectally where valves have been failming
IN A MATTER OF HOURS)
COAL GASIFICAIION TECHMOLOGY DEVELOPMENT REQUIREMENTS
TECHNOLOGY IS AVAILABLE FOR IST GENERATION COMMERCIAL PLANTS, BUT ALL
COMMERCIAL SCALE PLANTS HAVE EXPERIENCED PROBLEMS WHICH IN SOME CASES
fEQUIPED YEARS TO SOLVE OR CONTROL
1ST GENERATION FOREIGN TECHNOLOGY START UP/OPERATIOMAL PROBLEMS ARE
SIMILIAR TO PROBLEMS EXPERIENCED IN U. S. DEMO PLANTS
- IMPEDIMENTS TO TECHNOLOGY ARE RECOGNIZED IN PUBLISHED LITERATURE BUT
PROGRESS TOWARD RESOLVING THESE IMPEDIMENTS IS SLOW
RECENT CONTACTS WITH DOE-GRI SPONSORED COAL GASIFICATION EVALUATION
CONTRACTORS INDICATE THAT THERE HAVE BEEN NO REAL SOLUTIONS TO ANY OF
THE SIGNIFICANT PROBLEMS IN RECENT YEARS
XV. REFERENCES

1. "Engineering Support Services for the DOE/GRI Coal Gasification Research Program", Monthly Technical Progress Reports Oct. 78 thru Dec. 79, by Pallman Kellogg.
2. "Technical Evaluation for Joint DOE-GRI Gasification Program", Final Report Nov. 1978, By C. F. Braun © Co.
3. "Materials, Equipment for Conversion of Coal", Chemical Engineering June 2, 1980.
4. Petroleum Mechanical Engineering and Pressure Vessels and Piping Conference Sept. 19-24, 1976, "Materials Considerations for the Bigas Coal Gasification Pilot Plant".
5. Materials and Components DOE Newsletters, Contract EX-77-C-01-2716.
6. L. J. Partridge AECI Limited, "Coal-Based Ammonia Plant Operation", CEP Aug. 1976.
7. K. H. Vanheek \& W. Wanzl, "Materials, Problems and Research in German Coal Conversion Projects", International Meeting on Materials for the Conversion and Utilization of Coal Oct. ll-13, 1977.
8. "Instrumentation and Control for Fossil Energy Processes" Requirements, May 15, 1980, JPL for DOE.
9. "Failure Report Summaries from Coal Conversion Pilot Plants" National Bureau of Standards - Failure Information Center.
10. "Materials Problems Experience at the Synthane Coal Gasification Pilot Plant", Journal of Engineering Materials and Technology, April 1979, Vol. 101.
11. "Assessment of Long-Term Research Needs for Coal Gasificetion Technologies", April 1979, Fossil Energy Research Working Group, The Mitre Cerporation.
12. W. A. Bush and E. C. Slade, "Survey of Industrial Corl Conversion Equipment Capabilities: Valves," ORNL/TM-6071, Oak Ridge National Laboratory, June 1978.
13. J. P. Meyer and M. S. Edwards, "Survey of Industrial Coal Conversion Equipment Capabilities: High-Temperature, High-Pressure Gas Purification," ORNL/TM-6072, Oak Ridge National Laboratory, June 1978.
14. W. R. Gambill and W. R. Reed, "Survey of Industrial Coal Conversion Equipment Capabilities: Heat Recovery and Utilization," ORNL/TM-6073, Oak Ridge National Laboratory July 1978.
15. W. R. Williams, J. R. Horton, W. F. Boudreau, and 14. Simon-Tov, "Survey of Industrial Ccal Conversion Equipment Capabilities: Rotating Components," ORNL/TM-6074, Oak Ridge National Laboratory, April 1978.
16. "Fundamental Data Needs for Coal Conversion Technology-Appendices," TID-28152, Recon Systeme, Inc., October 1977.
17. "A Program to Discover Materials Suitable for service Under Hostile Conditions Obtained in Bquipment for the Gasification of Coal and Other Solid Fuels," Fe-1784-24, The Metal Properties Council, Inc., March 1978.
18. "Material Sciences Programs, FY 1977," ERDA 77-123, Energy Research and Development Administration, Division of Basic Energy Sciences.
19. D. W. Hatcher, T. M. Andress, and W. A. Bush, "Survey of Industrial Coal Conversion Equipment Capabilities: Letdown Valves," ORNL/TM-6585, Oak Ridge National Laboratory, November 1979.
20. D. W. Hatcher and C. B. Tolliver, "Survey of Industrial Coal Conversion Equipment Capabilities: Machanical Piping Connectors and Expansion Joints," ORNL/TM-65-86, Oak Ridge National Laboratory, June 1979.
21. K. A. Rogers, R. F. Hill, RE-2468-51, "Coal Conversion Comparisons", ESCOE, July 1979.
22. "Comparison of Coal Gasification Processes" Humphreys \& Glasgow LTD, London
23. Larry A. Bissett, "An Engineering Assessment of Entrainment Gasification", DOE April 1978.
24. Gary L. Baugnman, "Synthetic Fuels Data Handbook" Cameron Engineers Inc., 1978.
25. W. R. Williams, J. R. Horton, W. R. Reed, W. F. Boudreau, "Survey of Industrial Coal Conversion Equipment Capabilities: Equipment Operating Experience, Prices, and Development Program", Cak Ridge National Laboratory, Jan. 1980.
26. R. Tracy Eddinger, "The Pyrolyses Route to Gasification", Cogas Development Co., Aug 1979.
27. John Stringer, "Materiais Problems and Opportunities in Coal Conversion Systems", paper presented at the Fifth Energy Technology Conference in Washington, D. C.; Peb. 1978.
28. Heeyoung Yoon, James Wei, Morton M. Denn, "Analysim of Lurgi Gasification of Two U.S. Coals", Chemical Engineering Science, Voi. 34, pp 231-z37, 1979.
29. Symposium papers "Clean Fuels From Coal". June 1975.
30. "Fossil Energy Program Summary Document", DOE, Mar. 1979.
31. Conference papers Materials for Coal Conversion and Utilization", Oct. 1979.
32. Proceeding: of the "Ninth Synthetic Pipeline Gas Bymposium" Oct. 1977.
33. Proceedings of the " 1979 Symposium on Instrumentation and Control for Fossil Energy Processes", Aug. 1979.
34. Proceedings of the 1977 Symposium on Instrumentation and Control for Fossil Energy Processes, June 1978.
35. Christopher F. Blazek, Nathaniel R. Baker, Raywond R. Tison, "High-BTU Coal Gasification Processes", IGT, Jan. 1979.
36. Christopher F. Blazek, Nathaniel R. Baker, Raymond R. Tison, "Low- and Medium-BTU Coal Gasification Procesees, IGT, Jan. 1979.
37. "Factored Estimates for Eastern Coal Commercial Concepts", Interim Report - DOE/GRI, Sept. 1978.
38. Symposium papers of the Symposium on Ammonia From Coal, May 1979.
39. "Availability of Fossil-Fired Steam Power Plants" Special Report EPRI June 1977
40. H. F. Hartman, J. P. Belk, D. E. Reagan
"Low BTU Coal Gasification Processes" Oak Ridge National Laboratory Nov. 1978
41. "Handbook of Gasifiers and Gas Treatment Systems" Dravo Corporation February 1976
42. Symposium Papers, "Advances in Coal Utilization Technology" Louisville, KY May 1979
43. Synthetic Fuels Report - Synthetic Fuels Subcomittee of The Senate Budget Committee, Sept. 1979
44. "Coal Gasification" DOE Quarterly Reports
45. Symposium Papers "Clean Fuels from Coals" June 1975

[^0]:    STANDARIEED

    - ANY CHANGES HAD TO BE JUSTIFIED AND APPLICABLE TO ALL INSTALLATIONS
    OF PLANTS WAS $\$ 750$ MILLION (EQUIVALENT TO $\$ 2.5$ BILLIOM CUEDEAT TOTAL COST OF 9
    5
    4
    4

[^1]:    - plamt scale c-commencial. d-ofmgmetmation. p-mler. Dy-pmocies devilommet vint

[^2]:    $$
    308
    $$

    plants showed the
    Study of 550 reported failures in coal gasification following causes:

    $$
    19 \% \text { (Piping, valves, pumps, } \mathrm{e}_{\mathrm{C}} \text { lones) }
    $$

    At one pilot plant, only one out of six failure incidents were said to be reported to DOE*

[^3]:    YGgWnN
    NA甘 ISGJ
    SUS－IG
    6
    6
    1
    0
    $G-7$
    $G-7 A$

[^4]:    IGT TEST
    NUMBER

[^5]:    IGT TEST
    NGMBER
    9

[^6]:    - SLAG TAP hole redesige/modification to prevent plugging and freezing - COAL TAR REMOVRL/ACCUMULATION PREVENTION
    - devices/mechanisms for char recycling to increase efficiency

[^7]:    INTERNAL SOLIDS CONTROL VALVES ARE NEEDED

    - A DEVELOPMENT PROGRAM AND A FACILITY CAPABLE OF TESTING PROTOTYPE VALVES

    EXISTING HARDWARE AND TECHNOLOGY CANNOT MEET ALL THE CRITICAL
    REQUIREMENTS OF SOLIDS FLOW SUCH AS, LARGE VOLUME FLOW, EROSIVE
    CONDITIONS, HIGH TEMPERATURES, HIGH PRESSURE AND CORROSIVE ATMOSPHERE
    都

    1
    ,

[^8]:    - METALS, HARDFACINGS, AND REFRACTORIES ARE MEEDED TO PROVIDE ADEQUATE

[^9]:    CURRENT STATUS
    

