62 research outputs found

    Metabolic potential of endophytic bacteria

    Get PDF
    The bacterial endophytic microbiome promotes plant growth and health and beneficial effects are in many cases mediated and characterized by metabolic interactions. Recent advances have been made in regard to metabolite production by plant microsymbionts showing that they may produce a range of different types of metabolites. These substances play a role in defense and competition, but may also be needed for specific interaction and communication with the plant host. Furthermore, few examples of bilateral metabolite production are known and endophytes may modulate plant metabolite synthesis as well. We have just started to understand such metabolic interactions between plants and endophytes, however, further research is needed to more efficiently make use of beneficial plant-microbe interactions and to reduce pathogen infestation as well as to reveal novel bioactive substances of commercial interest

    Endogenous PttHb1 and PttTrHb, and heterologous Vitreoscilla vhb haemoglobin gene expression in hybrid aspen roots with ectomycorrhizal interaction

    Get PDF
    Present knowledge on plant non-symbiotic class-1 (Hb1) and truncated (TrHb) haemoglobin genes is almost entirely based on herbaceous species while the corresponding tree haemoglobin genes are not well known. The function of these genes has recently been linked with endosymbioses between plants and microbes. In this work, the coding sequences of hybrid aspen (Populus tremula×tremuloides) PttHb1 and PttTrHb were characterized, indicating that the key residues of haem and ligand binding of both genes were conserved in the deduced amino acid sequences. The expression of PttHb1 and PttTrHb was examined in parallel with that of the heterologous Vitreoscilla haemoglobin gene (vhb) during ectomycorrhiza/ectomycorrhizal (ECM) interaction. Both ECM fungi studied, Leccinum populinum and Xerocomus subtomentosus, enhanced root formation and subsequent growth of roots of all hybrid aspen lines, but only L. populinum was able to form mycorrhizas. Real-time PCR results show that the dual culture with the ECM fungus, with or without emergence of symbiotic structures, increased the expression of both PttHb1 and PttTrHb in the roots of non-transgenic hybrid aspens. PttHb1 and PttTrHb had expression peaks 5 h and 2 d after inoculation, respectively, pointing to different functions for these genes during interaction with root growth-improving fungi. In contrast, ECM fungi were not able to enhance the expression of hybrid aspen endogenous haemoglobin genes in the VHb lines, which may be a consequence of the compensating action of heterologous haemoglobi

    Nutzung von Rhizobakterien und Endophyten zur biologischen BekÀmpfung von UnkrÀutern und UngrÀsern

    Get PDF
    UnkrĂ€uter und UngrĂ€ser tragen weltweit zu hohen Ertragseinbußen bei. SchĂ€tzungen zufolge kann mit einem Ertragsverlust von bis zu 34 % gerechnet werden (OERKE, 2006). Die grĂ¶ĂŸten Ertragsverluste entstehen durch die Konkurrenz zwischen der Feldfrucht und den UnkrĂ€utern fĂŒr Licht, NĂ€hrstoffe und Feuchtigkeit. Invasive Pflanzen tragen teilweise noch zu weiteren Problemen bei. So ist der Pollen der eingeschleppten Ambrosia artemisiifolia L., (BeifußblĂ€ttriges Traubenkraut, Familie Asteraceae) ein starkes Allergen und verlĂ€ngert die Saison fĂŒr europĂ€ische Pollenallergiker bis in den Oktober.Traubenkraut ist heute in Europa am hĂ€ufigsten in Ungarn, Frankreich und Italien anzutreffen. In Österreich sind Populationen vom Osten ausgehend auf landwirtschaftlichen FlĂ€chen und an StraßenrĂ€ndern zahlreich.Möglichkeiten zur EindĂ€mmung der Populationen existieren kaum. Eine Pflanze produziert bis zu 6000 Samen, die im Boden 40 Jahre ĂŒberleben. Eine Kontrolle mit Herbiziden ist in Sonnenblumenfeldern aufgrund der biologischen Verwandtschaft beider Pflanzen nicht möglich. Alternativ wird eine BekĂ€mpfung mit biologischen Mitteln angestrebt. Auf Ambrosia artemisiifolia spezialisierte herbivore Insekten wurden allerdings nicht gefunden. Die Nutzung von pflanzenassoziierten Rhizobakterien und Endophyten als bioaktive Herbizide wĂ€re eine neue Alternative. Direkt aus Ambrosia artemisiifolia isolierte Bakterien haben erhöhte Chancen, selektiv auf diese Pflanze zu wirken, so dass sie auch im Anbau von eng verwandten Kulturen und im biologischen Landbau angewendet werden könnten.Stichwörter: AMBEL, Ambrosia artemisiifolia, Bakterien, Bio-Herbizide, selektive WirkungUse of rhizobacteria and endophytes for biological control of weedsAbstractWeeds cause severe yield losses in agriculture, with a maximum estimate of 34% of yield loss worldwide due to competition between the crops and the weeds for nutrition, light and humidity (OERKE, 2006). Invasive plants contribute partially to other problems. The pollen of common ragweed, Ambrosia artemisiifolia L., for example, is five times more allergenic than grass pollen; already ten pollen grains per m3 air can trigger allergy in sensitized patients, including rhinitis, conjunctivitis and asthma. This neophyte from America has extended the season of allergy in European patients to October.Common ragweed is currently most frequent in Hungary, France and Italy. In Austria, ragweed populations along roads have increased dramatically since 2000.The effective means to control this weed of the Asteraceae family are limited; a single plant can produce up to 6000 seeds which stay in the soil for 40 years. Control using selective herbicides is not possible within stands of the Asteraceae member sunflower. Efforts to use herbivore insects as biological control agents also failed due to the unavailability of insects specializing on this ragweed. The use of plant-associated rhizobacteria and endophytes as bio-herbicides offers a novel alternative to conventional methods. By analogy to experiences from other plant-microbe systems, the chances to find microbes of the desired characteristics are highest when isolating and testing specimens directly from ragweed plants. These organisms often have an extremely narrow host range that permits their use for the control of among several even closely related plant species growing together in a field.Keywords: AMBEL, Ambrosia artemisiifolia, bacteria, bio-herbicide, common ragweed, selective functio

    Identifying functional gene sets from hierarchically clustered expression data: map of abiotic stress regulated genes in Arabidopsis thaliana

    Get PDF
    We present MultiGO, a web-enabled tool for the identification of biologically relevant gene sets from hierarchically clustered gene expression trees (). High-throughput gene expression measuring techniques, such as microarrays, are nowadays often used to monitor the expression of thousands of genes. Since these experiments can produce overwhelming amounts of data, computational methods that assist the data analysis and interpretation are essential. MultiGO is a tool that automatically extracts the biological information for multiple clusters and determines their biological relevance, and hence facilitates the interpretation of the data. Since the entire expression tree is analysed, MultiGO is guaranteed to report all clusters that share a common enriched biological function, as defined by Gene Ontology annotations. The tool also identifies a plausible cluster set, which represents the key biological functions affected by the experiment. The performance is demonstrated by analysing drought-, cold- and abscisic acid-related expression data sets from Arabidopsis thaliana. The analysis not only identified known biological functions, but also brought into focus the less established connections to defense-related gene clusters. Thus, in comparison to analyses of manually selected gene lists, the systematic analysis of every cluster can reveal unexpected biological phenomena and produce much more comprehensive biological insights to the experiment of interest

    Candidate pathogenicity factor/effector proteins of ‘Candidatus Phytoplasma solani’ modulate plant carbohydrate metabolism, accelerate the ascorbate–glutathione cycle, and induce autophagosomes

    Get PDF
    The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including ‘Candidiatus Phytoplasma solani’ are unknown. Six putative pathogenicity factors/effectors from six different strains of ‘Ca. P. solani’ were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after Agrobacterium-mediated transient transformation with the pathogenicity factor/effector constructs using confocal microscopy, pull-down, and co-immunoprecipitation, and enzyme assays. Candidate pathogenicity factors/effectors were shown to modulate plant carbohydrate metabolism and the ascorbate–glutathione cycle and to induce autophagosomes. PoStoSP06, PoStoSP13, and PoStoSP28 were localized in the nucleus and cytosol. The most active effector in the processes studied was PoStoSP06. PoStoSP18 was associated with an increase in phosphoglucomutase activity, whereas PoStoSP28, previously annotated as an antigenic membrane protein StAMP, specifically interacted with phosphoglucomutase. PoStoSP04 induced only the ascorbate–glutathione cycle along with other pathogenicity factors/effectors. Candidate pathogenicity factors/effectors were involved in reprogramming host carbohydrate metabolism in favor of phytoplasma own growth and infection. They were specifically associated with three distinct metabolic pathways leading to fructose-6-phosphate as an input substrate for glycolysis. The possible significance of autophagosome induction by PoStoSP28 is discussed

    Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases

    Get PDF
    Grapevine is one of the most important economic crops yielding berries, wine products as well as derivates. However, due to the large array of pathogens inducing diseases on this plant, considerable amounts of pesticides—with possible negative impact on the environment and health—have been used and are currently used in viticulture. To avoid negative impacts of such products and to ensure product quality, a substantial fraction of pesticides needs to be replaced in the near future. One solution can be related to the use of beneficial bacteria inhabiting the rhizo- and/or the endosphere of plants. These biocontrol bacteria and their secondary metabolites can reduce directly or indirectly pathogen diseases by affecting pathogen performance by antibiosis, competition for niches and nutrients, interference with pathogen signaling or by stimulation of host plant defenses. Due to the large demand for biocontrol of grapevine diseases, such biopesticides, their modes of actions and putative consequences of their uses need to be described. Moreover, the current knowledge on new strains from the rhizo- and endosphere and their metabolites that can be used on grapevine plants to counteract pathogen attack needs to be discussed. This is in particular with regard to the control of root rot, grey mould, trunk diseases, powdery and downy mildews, pierce’s disease, grapevine yellows as well as crown gall. Future prospects on specific beneficial microbes and their secondary metabolites that can be used as elicitors of plant defenses and/or as biocontrol agents with potential use in a more sustainable viticulture will be further discussed

    The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense

    No full text
    Cross talk between salicylic acid (SA)– and jasmonic acid (JA)–dependent defense signaling has been well documented in plants, but how this cross talk is executed and the components involved remain to be elucidated. We demonstrate that the plant-specific transcription factor WRKY70 is a common component in SA- and JA-mediated signal pathways. Expression of WRKY70 is activated by SA and repressed by JA. The early induction of WRKY70 by SA is NPR1-independent, but functional NPR1 is required for full-scale induction. Epistasis analysis suggested that WRKY70 is downstream of NPR1 in an SA-dependent signal pathway. Modulation of WRKY70 transcript levels by constitutive overexpression increases resistance to virulent pathogens and results in constitutive expression of SA-induced pathogenesis-related genes. Conversely, antisense suppression of WRKY70 activates JA-responsive/COI1-dependent genes. The effect of WRKY70 is not caused by subsequent changes in SA or JA levels. We suggest that WRKY70 acts as an activator of SA-induced genes and a repressor of JA-responsive genes, integrating signals from these mutually antagonistic pathways
    • 

    corecore