155 research outputs found

    Match play performance characteristics that predict post-match creatine kinase responses in professional rugby union players

    Get PDF
    Background: Rugby union players can take several days to fully recover from competition. Muscle damage induced during the match has a major role in player recovery; however the specific characteristics of match play that predict post-match muscle damage remains unclear. We examined the relationships between a marker of muscle damage and performance characteristics associated with physical contacts and high-speed movement in professional rugby union players. Methods: Twenty-eight professional rugby union players (15 forwards, 13 backs) participated in this study. Data were obtained from 4 European Cup games, with blood samples collected 2 h pre, and 16 and 40 h post-match, and were subsequently analysed for creatine kinase (CK). Relationships between changes in CK concentrations and number of physical contacts and high-speed running markers, derived from performance analysis and global positioning system (GPS) data, were assessed. Results: Moderate and moderate-large effect-size correlations were identified between contact statistics from performance analysis and changes in CK at 16 and 40 h post match in forwards and backs, respectively (e.g. backs; total impacts vs. ΔCK (r = 0.638, p < 0.01) and Δ% CK (r = 0.454, p < 0.05) 40 h post-match). Furthermore, moderate effect-size correlations were found between measures of high-speed running and sprinting, and changes in CK at 16 and 40 h post-match within the backs (e.g. high-speed running distance vs. ΔCK (r = 0.434, p = 0.056) and Δ% CK (r = 0.437, p = 0.054) 40 hrs post-match). Conclusions: Our data demonstrate that muscle damage induced by professional rugby union match play is to some extent predicted by the number of physical contacts induced during performance. Furthermore, we show for the first time that muscle damage in backs players is predicted by high-speed running measures derived from GPS. These data increase the understanding of the causes of muscle damage in rugby union; performance markers could potentially be used to tailor individual recovery strategies and subsequent training following rugby union competition

    Heart rate dynamics during cardio-pulmonary exercise testing are associated with glycemic control in individuals with type 1 diabetes

    Get PDF
    IntroductionThis study investigated the degree and direction (kHR) of the heart rate to performance curve (HRPC) during cardio-pulmonary exercise (CPX) testing and explored the relationship with diabetes markers, anthropometry and exercise physiological markers in type 1 diabetes (T1DM).Material and methodsSixty-four people with T1DM (13 females; age: 34 ± 8 years; HbA1c: 7.8 ± 1% (62 ± 13 mmol.mol-1) performed a CPX test until maximum exhaustion. kHR was calculated by a second-degree polynomial representation between post-warm up and maximum power output. Adjusted stepwise linear regression analysis was performed to investigate kHR and its associations. Receiver operating characteristic (ROC) curve was performed based on kHR for groups kHR 0.20 in relation to HbA1c.ResultsWe found significant relationships between kHR and HbA1c (β = -0.70, P < 0.0001), age (β = -0.23, P = 0.03) and duration of diabetes (β = 0.20, P = 0.04). Stepwise linear regression resulted in an overall adjusted R2 of 0.57 (R = 0.79, P < 0.0001). Our data revealed also significant associations between kHR and percentage of heart rate at heart rate turn point from maximum heart rate (β = 0.43, P < 0.0001) and maximum power output relativized to bodyweight (β = 0.44, P = 0.001) (overall adjusted R2 of 0.44 (R = 0.53, P < 0.0001)). ROC curve analysis based on kHR resulted in a HbA1c threshold of 7.9% (62 mmol.mol-1).ConclusionOur data demonstrate atypical HRPC during CPX testing that were mainly related to glycemic control in people with T1DM

    Effects of exercise training on metabolic syndrome risk factors in post-menopausal women – a systematic review and meta-analysis of randomised controlled trials

    Get PDF
    Background & Aims: Alterations in the hormonal profiles as women transition to the menopause predisposes individuals to the metabolic syndrome (MetS). In post-menopausal women, this can be exacerbated by sedentary behaviour and physical inactivity. Physical activity can convey many health benefits including improvement in MetS risk factors. However, it remains to be elucidated how differing exercise intensities and its mode of delivery can ameliorate MetS risk factors and resultant progression amongst post-menopausal women. The purpose of this systematic review and meta-analysis was to investigate the effects and efficacy of exercise training on MetS risk factors in post-menopausal women. Methods: Database searches using PubMed, Scopus, Web of Science and the Cochrane Central Register of Controlled Trials were conducted from inception to December 2021 for randomised controlled studies (RCTs) investigating exercise training (>8 weeks) in at least one of the MetS risk factors in post-menopausal women. Utilising the random-effects model, appropriate standardised mean differences (SMD) or mean differences (MD) with 95% confidence interval (CI) for each MetS risk factor were used to calculate the overall effect size between the exercise and control groups. Sub-group analyses were performed for exercise intensity, modality, and duration for each risk factor. Meta-regression was performed for categorical (health status) and continuous (body mass index) covariates. Results: 39 RCTs (40 studies) involving 2,132 participants were identified as eligible. Overall,the meta-analysis shows that exercise training significantly improved all MetS risk factors: waist circumference (WC) [MD: -2.61 cm; 95% CI: -3.39 to -1.86 cm; p < 0.001; 21 studies]; triglycerides (TG) [SMD: -0.40 mmol/L; 95% CI: -0.71 to -0.09 mmol/L; p = 0.01; 25 studies]; high-density lipoprotein (HDL) [SMD: 0.84 mmol/L; (95% CI: 0.41 to 1.27 mmol/L; p < 0.001; 26 studies]; fasting glucose (BG) [SMD: -0.38 mmol/L (95% CI: -0.60 to -0.16 mmol/L; p < 0.001; 20 studies]; systolic blood pressure (SBP) [MD: -5.95 mmHg (95% CI: -7.98 to -3.92 mmHg; p < 0.001; 23 studies]; and diastolic blood pressure (DBP) [MD: -4.14 mmHg (95% CI:-6.19 to -2.08 mmHg; p < 0.001; 23 studies]. Furthermore, sub-group analyses identified that moderate intensity and combined exercise training significantly improved MetS risk factors (p< 0.05) except for HDL, with combined exercise being the most effective. Long duration (≥12 weeks) training also significantly improved MetS risk factors except for TG. Meta-regression revealed no moderating effects on any MetS risk variables. Conclusion: This study reinforces the importance of regular physical activity as a non-pharmacological tool in the reduction of MetS risk in post-menopausal women, with significant metabolic improvements seen in interventions spanning 8 – 10 weeks. Moderate intensity and combined training significantly benefitted abdominal obesity, dyslipidaemia, dysglycaemia and hypertension in post-menopausal women. Improvements in at least one MetS risk were also seen with other exercise modalities and intensities

    The effects of a single whole-body cryotherapy exposure on physiological, performance and perceptual responses of professional academy soccer players following repeated sprint exercise

    Get PDF
    In professional youth soccer players, the physiological, performance and perceptual effects of a single whole body cryotherapy (WBC) session performed shortly after repeated sprint exercise were investigated. In a randomized, counter-balanced and crossover design, 14 habituated English Premier League academy soccer players performed 15 x 30 m sprints (each followed by a 10 m forced deceleration) on two occasions. Within 20 min of exercise cessation, players entered a WBC chamber (Cryo: 30 s at -60°C, 120 s at -135°C) or remained seated (Con) indoors in temperate conditions (~25°C). Blood and saliva samples, peak power output (countermovement jump) and perceptual indices of recovery and soreness were assessed pre-exercise and immediately, 2 h and 24 h post exercise. When compared to Con, a greater testosterone response was observed at 2 h (+32.5 ± 32.3 pg·ml-1, +21%) and 24 h (+50.4 ± 48.9 pg·ml-1, +28%) post-exercise (both P=0.002) in Cryo (trial x treatment interaction: P=0.001). No between trial differences were observed for other salivary (cortisol and testosterone/cortisol ratio), blood (lactate and Creatine Kinase), performance (peak power output) or perceptual (recovery or soreness) markers (all trial x treatment interactions: P>0.05); all of which were influenced by exercise (time effects: all P<0.05). A single session of WBC performed within 20 min of repeated sprint exercise elevated testosterone concentrations for 24 h but did not affect any other performance, physiological or perceptual measurements taken. While unclear, WBC may be efficacious for professional soccer players during congested fixture periods

    Could Age, Sex and Physical Fitness Affect Blood Glucose Responses to Exercise in Type 1 Diabetes?

    Get PDF
    Closed-loop systems for patients with type 1 diabetes are progressing rapidly. Despite these advances, current systems may struggle in dealing with the acute stress of exercise. Algorithms to predict exercise-induced blood glucose changes in current systems are mostly derived from data involving relatively young, fit males. Little is known about the magnitude of confounding variables such as sex, age, and fitness level—underlying, uncontrollable factors that might influence blood glucose control during exercise. Sex-related differences in hormonal responses to physical exercise exist in studies involving individuals without diabetes, and result in altered fuel metabolism during exercise. Increasing age is associated with attenuated catecholamine responses and lower carbohydrate oxidation during activity. Furthermore, higher fitness levels can alter hormonal and fuel selection responses to exercise. Compounding the limited research on these factors in the metabolic response to exercise in type 1 diabetes is a limited understanding of how these variables affect blood glucose levels during different types, timing and intensities of activity in individuals with type 1 diabetes (T1D). Thus, there is currently insufficient information to model a closed-loop system that can predict them accurately and consistently prevent hypoglycemia. Further, studies involving both sexes, along with a range of ages and fitness levels, are needed to create a closed-loop system that will be more precise in regulating blood glucose during exercise in a wide variety of individuals with T1D

    Different Heart Rate Patterns During Cardio-Pulmonary Exercise (CPX) Testing in Individuals With Type 1 Diabetes

    Get PDF
    To investigate the heart rate during cardio-pulmonary exercise (CPX) testing in individuals with type 1 diabetes (T1D) compared to healthy (CON) individuals. Fourteen people (seven individuals with T1D and seven CON individuals) performed a CPX test until volitional exhaustion to determine the first and second lactate turn points (LTP1 and LTP2), ventilatory thresholds (VT1 and VT2), and the heart rate turn point. For these thresholds cardio-respiratory variables and percentages of maximum heart rate, heart rate reserve, maximum oxygen uptake and oxygen uptake reserve, and maximum power output were compared between groups. Additionally, the degree and direction of the deflection of the heart rate to performance curve (kHR) were compared between groups. Individuals with T1D had similar heart rate at LTP1 (mean difference) −11, [(95% confidence interval) −27 to 4 b.min−1], at VT1 (−12, −8 to 33 b.min−1) and at LTP2 (−7, −13 to 26 b.min−1), at VT2 (−7, −13 to 28 b.min−1), and at the heart rate turn point (−5, −14 to 24 b.min−1) (p = 0.22). Heart rate expressed as percentage of maximum heart rate at LTP1, VT1, LTP2, VT2 and the heart rate turn point as well as expressed as percentages of heart rate reserve at LTP2, VT2 and the heart rate turn point was lower in individuals with T1D (p < 0.05). kHR was lower in T1D compared to CON individuals (0.11 ± 0.25 vs. 0.51 ± 0.32, p = 0.02). Our findings demonstrate that there are clear differences in the heart rate response during CPX testing in individuals with T1D compared to CON individuals. We suggest using submaximal markers to prescribe exercise intensity in people with T1D, as the heart rate at thresholds is influenced by kHR

    Metabolomic, hormonal and physiological responses to hypoglycemia versus euglycemia during exercise in adults with type 1 diabetes

    Get PDF
    Introduction This study sought to compare the metabolomic, hormonal and physiological responses to hypoglycemia versus euglycemia during exercise in adults with type 1 diabetes (T1D).Research design and methods Thirteen individuals with T1D (hemoglobin; 7.0%±1.3% (52.6±13.9 mmol/mol), age; 36±15 years, duration diabetes; 15±12 years) performed a maximum of 45 min submaximal exercise (60%±6% V̇O2max). Retrospectively identified exercise sessions that ended in hypoglycemia ((HypoEx) blood glucose (BG)≤3.9 mmol/L) were compared against a participant-matched euglycemic condition ((EuEx) BG≥4.0, BG≤10.0 mmol/L). Samples were compared for detailed physiological and hormonal parameters as well as metabolically profiled via large scale targeted ultra-high-performance liquid chromatography coupled to tandem mass spectrometry. Data were assessed using univariate and multivariate analysis techniques with false discovery rate adjustment. Significant results were considered at p≤0.05.Results Cardiorespiratory and counterregulatory hormone responses, whole-body fuel use and perception of fatigue during exercise were similar under conditions of hypoglycemia and euglycemia (BG 3.5±0.3 vs 5.8±1.1 mmol/L, respectively p<0.001). HypoEx was associated with greater adenosine salvage pathway activity (5’-methylthioadenosine, p=0.023 and higher cysteine and methionine metabolism), increased utilization of glucogenic amino acids (glutamine, p=0.021, alanine, aspartate and glutamate metabolism and homoserine/threonine, p=0.045) and evidence of enhanced β-oxidation (lower carnitine p<0.001, higher long-chain acylcarnitines).Conclusions Exposure to acute hypoglycemia during exercise potentiates alterations in subclinical indices of metabolic stress at the level of the metabolome. However, the physiological responses induced by dynamic physical exercise may mask the symptomatic recognition of mild hypoglycemia during exercise in people with T1D, a potential clinical safety concern that reinforces the need for diligent glucose management

    Resistance isn't futile: the physiological basis of the health effects of resistance exercise in individuals with type 1 diabetes

    Get PDF
    The importance of regular exercise for glucose management in individuals with type 1 diabetes is magnified by its acknowledgment as a key adjunct to insulin therapy by several governmental, charitable, and healthcare organisations. However, although actively encouraged, exercise participation rates remain low, with glycaemic disturbances and poor cardiorespiratory fitness cited as barriers to long-term involvement. These fears are perhaps exacerbated by uncertainty in how different forms of exercise can considerably alter several acute and chronic physiological outcomes in those with type 1 diabetes. Thus, understanding the bodily responses to specific forms of exercise is important for the provision of practical guidelines that aim to overcome these exercise barriers. Currently, the majority of existing exercise research in type 1 diabetes has focused on moderate intensity continuous protocols with less work exploring predominately non-oxidative exercise modalities like resistance exercise. This is surprising, considering the known neuro-muscular, osteopathic, metabolic, and vascular benefits associated with resistance exercise in the wider population. Considering that individuals with type 1 diabetes have an elevated susceptibility for complications within these physiological systems, the wider health benefits associated with resistance exercise may help alleviate the prevalence and/or magnitude of pathological manifestation in this population group. This review outlines the health benefits of resistance exercise with reference to evidence in aiding some of the common complications associated with individuals with type 1 diabetes
    • …
    corecore