11 research outputs found

    Evidence for increasing global wheat yield potential

    Get PDF
    Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges.Fil: Guarin, Jose Rafael. National Aeronautics and Space Administration; Estados Unidos. Columbia University; Estados Unidos. Florida State University; Estados UnidosFil: Martre, Pierre. Institut Agro Montpellier SupAgro; FranciaFil: Ewert, Frank. Universitat Bonn; Alemania. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Webber, Heidi. Universitat Bonn; Alemania. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Dueri, Sibylle. Institut Agro Montpellier SupAgro; FranciaFil: Calderini, Daniel Fernando. Universidad Austral de Chile; ChileFil: Reynolds, Matthew. International Maize and Wheat Improvement Center ; MéxicoFil: Molero, Gemma. KWS; FranciaFil: Miralles, Daniel Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Garcia, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Slafer, Gustavo Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universitat de Lleida; España. Institució Catalana de Recerca i Estudis Avancats; EspañaFil: Giunta, Francesco. Consiglio Nazionale Delle Ricerche. Istituto Di Scienze Dell Atmosfera E del Clima.; ItaliaFil: Pequeno, Diego N.L.. International Maize and Wheat Improvement Center; MéxicoFil: Stella, Tommaso. Universitat Bonn; Alemania. Leibniz Centre for Agricultural Landscape Research; AlemaniaFil: Ahmed, Mukhtar. University Of Pakistan; PakistánFil: Alderman, Phillip D.. Oklahoma State University; Estados UnidosFil: Basso, Bruno. Michigan State University; Estados UnidosFil: Berger, Andres G.. Instituto Nacional de Investigacion Agropecuaria;Fil: Bindi, Marco. Università degli Studi di Firenze; ItaliaFil: Bracho-Mujica, Gennady. Universität Göttingen; AlemaniaFil: Cammarano, Davide. Purdue University; Estados UnidosFil: Chen, Yi. Chinese Academy of Sciences; República de ChinaFil: Dumont, Benjamin. Université de Liège; BélgicaFil: Rezaei, Ehsan Eyshi. Leibniz Institute Of Plant Genetics And Crop Plant Research.; AlemaniaFil: Fereres, Elias. Universidad de Córdoba; EspañaFil: Ferrise, Roberto. Michigan State University; Estados UnidosFil: Gaiser, Thomas. Universitat Bonn; AlemaniaFil: Gao, Yujing. Florida State University; Estados UnidosFil: Garcia Vila, Margarita. Universidad de Córdoba; EspañaFil: Gayler, Sebastian. Universidad de Hohenheim; Alemani

    A high-yielding traits experiment for modeling potential production of wheat: field experiments and AgMIP-Wheat multi-model simulations

    Get PDF
    Grain production must increase by 60% in the next four decades to keep up with the expected population growth and food demand. A significant part of this increase must come from the improvement of staple crop grain yield potential. Crop growth simulation models combined with field experiments and crop physiology are powerful tools to quantify the impact of traits and trait combinations on grain yield potential which helps to guide breeding towards the most effective traits and trait combinations for future wheat crosses. The dataset reported here was created to analyze the value of physiological traits identified by the International Wheat Yield Partnership (IWYP) to improve wheat potential in high-yielding environments. This dataset consists of 11 growing seasons at three high-yielding locations in Buenos Aires (Argentina), Ciudad Obregon (Mexico), and Valdivia (Chile) with the spring wheat cultivar Bacanora and a high-yielding genotype selected from a doubled haploid (DH) population developed from the cross between the Bacanora and Weebil cultivars from the International Maize and Wheat Improvement Center (CIMMYT). This dataset was used in the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Phase 4 to evaluate crop model performance when simulating high-yielding physiological traits and to determine the potential production of wheat using an ensemble of 29 wheat crop models. The field trials were managed for non-stress conditions with full irrigation, fertilizer application, and without biotic stress. Data include local daily weather, soil characteristics and initial soil conditions, cultivar information, and crop measurements (anthesis and maturity dates, total above-ground biomass, final grain yield, yield components, and photosynthetically active radiation interception). Simulations include both daily in-season and end-of-season results for 25 crop variables simulated by 29 wheat crop models

    Evidence for increasing global wheat yield potential

    Get PDF
    Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 +/- 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges

    Simple scaling of climate inputs allows robust extrapolation of modelled wheat yield risk at a continental scale

    No full text
    Climate change increases variability and uncertainty of crop performance. Process-based crop growth models represent the complex spatio-temporal interactions between plants, atmosphere, and soils and enable realistic climate risk assessments of future crop yield. But they require continuous, detailed daily weather data. Probability distributions of crop model results provide risk profiles of yield and serve to assess the impacts of long-term climate variability and change on crop yields. This paper tests to what extent a simple method for adjusting daily weather data using seasonal and monthly factors can produce robust estimates of risk profiles at a continental scale. We examined the predictability of risk profiles of modelled wheat grain yield across the Australian grain belt. Snowtown, in the middle of the South Australian grains belt (33.8°S, 138.2°E) was selected as the reference site, and 49 wheat-growing sites spanning from 23.5 to 42.8°S of latitude and 115–151.8°E of longitude were used for testing the adjustments of precipitation, maximum and minimum temperatures and global solar radiation. Adjustment factors were calculated as the difference in long-term average of a given climate variable between a test site and the reference site. For each test site, we compared risk profiles modelled with observed weather data with step-wise adjusted weather data. Simple adjustments of both rainfall and temperatures produced good matching of risk profiles (root mean square error, RMSE < 0.5 t/ha) in 80% of the sites. Adding the adjustment of the temperatures – with monthly factors- and solar radiation improved the match of risk profiles in the most climate-contrasting sites. In regions with limited availability of high-quality climate data, simple scaling of climate inputs used in this study can provide basic climate data for modelling and generating robust risk profiles of crop yield.Gennady Bracho-Mujica, Peter T. Hayman, Victor O. Sadras, Bertram Ostendor

    Effects of changes in climatic means, variability, and agro-technologies on future wheat and maize yields at 10 sites across the globe

    No full text
    To address the rising global food demand in a changing climate, yield gaps (YG), the difference between potential yields under irrigated (YP) or rainfed conditions (YWL) and actual farmers’ yields (Ya), must be significantly narrowed whilst raising potential yields. Here, we examined the likely impacts of climate change (including changes in climatic variability) and improvements in agricultural technologies on crop yields and yield gaps. Eight rigorously tested crop simulation models were calibrated for wheat and maize and run at 10 different sites around the world. Simulations were performed to estimate YP, YWL and yields achievable under three locally defined technology packages: TP0 represents average farmer's practice, while TP1 and TP2 are increasingly advanced technologies. Simulations were run for the baseline (1981–2010) and twelve future climate scenarios for 2050, representing changes in the means of climate variables and in the variability of daily temperature and dry/wet spell durations. Our basic hypotheses were that (H1) mean climate changes combined with increased weather variability lead to more negative yield impacts than mean climate changes alone, and (H2) advanced technologies would serve as effective adaptations under future climatic conditions. We found that crop responses were dependent on site characteristics, climate scenarios and adopted technologies. Our findings did not support H1. As for H2, the improved technology packages increased wheat and maize yields at all sites, but yield gap reduction varied substantially among sites. Future studies should consider a broader range of climate scenarios and methods for analysing potential shifts in climate variability. Moreover, it is recommended to co-create and evaluate climate zone-specific climate-smart crop production technologies in interaction with a wide range of local stakeholders

    Evidence for increasing global wheat yield potential.

    Get PDF
    Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges

    Data from the winter wheat potential yield experiment in New Zealand and response to variable sowing dates and densities: field experiments and AgMIP-Wheat multi-model simulations

    No full text
    The dataset contains 6 growing seasons of a local winter wheat cultivar ‘Wakanui’ at two farms located in the Canterbury Region of New Zealand. The data of the experiment was used in the AgMIP-Wheat Phase 4 project to evaluate the performance of an ensemble of 29 crop models to predict the effect of changing sowing dates and rates on yield and yield components, in a high-yielding environment. The treatments were managed for non-stress conditions. Data include local daily weather, soil characteristics and initial soil N conditions, crop measurements (anthesis and maturity dates, total above-ground biomass, final grain yield, and yield components), and cultivar information. Simulations include both daily in-season and end-of-season results from 29 wheat crop models

    Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment

    Get PDF
    International audienceCrop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures

    Evidence for increasing global wheat yield potential

    No full text
    Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges

    Evidence for increasing global wheat yield potential

    Get PDF
    International audienceAbstract Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 ± 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges
    corecore