38 research outputs found

    A study of the phase transition behavior of mixed ammonium sulfate ? malonic acid aerosols

    No full text
    International audienceThis is a study into the phase transitions of aerosol composed of the ternary system ammonium sulfate (AS) ? malonic acid (MA) ? water using infrared extinction spectroscopy. Twelve compositions were studied in both deliquescence and efflorescence mode experiments. The presence of a MA fraction, by dry mass, (fMA) of 0.1 in an AS aerosol altered the relative humidity at which the phase transitions occur in an atmospherically significant manner. For compositions with 0.25fMAfMA=0.9, the crystallization relative humidity of MA was lowered from RH=6% to less than 1%. Similarly, at fMA=0.4, the AS component did not crystallize. The atmospheric implications of the results are discussed

    A study of the phase transition behavior of internally mixed ammonium sulfate - malonic acid aerosols

    Get PDF
    International audienceThis is a study into the phase transitions of aerosol composed of the ternary system ammonium sulfate (AS) - malonic acid (MA) - water using infrared extinction spectroscopy. Twelve compositions were studied in both deliquescence and efflorescence mode experiments. The presence of a MA fraction, by dry mass, (fMA) of 0.1 in an AS aerosol altered the relative humidity at which the phase transitions occur in an atmospherically significant manner. For compositions with 0.25fMAfMA=0.9, the crystallization relative humidity of MA was lowered from RH=6% to less than 1%. Similarly, at fMA=0.4, the AS component did not crystallize. The atmospheric implications of the results are discussed

    Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    Get PDF
    International audienceThe phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humdity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS) found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidites with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH) and increases the efflorescence relative humidity (ERH) of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently

    Estimation of nitrogen budgets for contrasting catchments at the landscape scale

    Get PDF
    A comprehensive assessment of nitrogen (N) flows at the landscape scale is fundamental to understand spatial interactions in the N cascade and to inform the development of locally optimised N management strategies. To explore these interactions, complete N budgets were estimated for two contrasting hydrological catchments (dominated by agricultural grassland vs. semi-natural peat-dominated moorland), forming part of an intensively studied landscape in southern Scotland. Local scale atmospheric dispersion modelling and detailed farm and field inventories provided high resolution estimations of input fluxes. Direct agricultural inputs (i.e. grazing excreta, N<sub>2</sub> fixation, organic and synthetic fertiliser) accounted for most of the catchment N inputs, representing 82% in the grassland and 62% in the moorland catchment, while atmospheric deposition made a significant contribution, particularly in the moorland catchment, contributing 38% of the N inputs. The estimated catchment N budgets highlighted areas of key uncertainty, particularly N<sub>2</sub> exchange and stream N export. The resulting N balances suggest that the study catchments have a limited capacity to store N within soils, vegetation and groundwater. The "catchment N retention", i.e. the amount of N which is either stored within the catchment or lost through atmospheric emissions, was estimated to be 13% of the net anthropogenic input in the moorland and 61% in the grassland catchment. These values contrast with regional scale estimates: Catchment retentions of net anthropogenic input estimated within Europe at the regional scale range from 50% to 90%, with an average of 82% (Billen et al., 2011). This study emphasises the need for detailed budget analyses to identify the N status of European landscapes

    Impacts of the 2014-2015 Holuhraun eruption on the UK atmosphere

    Get PDF
    Volcanic emissions, specifically from Iceland, pose a pan-European risk and are on the UK National Risk Register due to potential impacts on aviation, public health, agriculture, the environment and the economy, both from effusive and explosive activity. During the 2014-2015 fissure eruption at Holuhraun in Iceland, the UK atmosphere was significantly perturbed. This study focuses one major incursion in September 2014, affecting the surface concentrations of both aerosols and gases across the UK, with sites in Scotland experiencing the highest sulfur dioxide (SO2) concentrations. The perturbation event observed was confirmed to originate from the fissure eruption using satellite data from GOME2B and the chemical transport model, EMEP4UK, which was used to establish the spatial distribution of the plume over the UK during the event of interest. At the two UK European Monitoring and Evaluation Program (EMEP) supersite observatories (Auchencorth Moss, SE Scotland and Harwell, SE England) significant alterations in sulfate (SO42-) content of PM10 and PM2.5 during this event, concurrently with evidence of an increase in ultrafine aerosol, most likely due to nucleation and growth of aerosol within the plume, were observed. At Auchencorth Moss, higher hydrochloric acid (HCl) concentrations during the September event (max = 1.21 µg m-3, c.f annual average 0.12 µg m-3 35 in 2013), were assessed to be due to acid displacement of chloride (Cl-) from sea salt (NaCl) to form HCl gas rather than due to primary emissions of HCl from Holuhraun. The gas and aerosol partioning at Auchencorth moss of inorganic species by thermodynamic modelling, confirmed the observed partioning of HCl. Using the data from the chemical thermodynamic model, ISORROPIA-II, there is evidence that the background aerosol, which is typically basic at this site, became acidic with an estimated pH of 3.8 during the peak of the event. Volcano plume episodes were periodically observed by the majority of the UK air quality monitoring networks during the first 4 months of the eruption (August – December 2014), at both hourly and monthly resolution. In the low resolution networks, which provide monthly SO2 averages, concentrations were found to be significantly elevated at remote “clean” sites in NE Scotland and SW England, with record high SO2 concentrations for some sites in September 2014. For sites which are regularly influenced by anthropogenic emissions, taking into account the underlying trends, the eruption led to statistically unremarkable SO2 concentrations (return probabilities >0.1, ~10 months). However for a few sites, SO2 concentrations were clearly much higher than has been previously observed (return probability 3000 months). The Holuhraun Icelandic eruption has resulted in a unique study providing direct evidence of atmospheric chemistry perturbation of both gases and aerosols in the UK background atmosphere. The measurements can be used to both challenge and verify existing atmospheric chemistry of volcano plumes, especially those originating from effusive eruptions, which have been under-explored, due to limited observations available in the literature. If all European data sets were collated this would allow improved model verification and risk assessments for future volcanic eruptions of this type

    The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust

    Get PDF
    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK

    Drivers for spatial, temporal and long-term trends in atmospheric ammonia and ammonium in the UK

    Get PDF
    A unique long-term dataset from the UK National Ammonia Monitoring Network (NAMN) is used here to assess spatial, seasonal and long-term variability in atmospheric ammonia (NH3: 1998–2014) and particulate ammonium(NH4+: 1999–2014) across the UK. Extensive spatial heterogeneity in NH3 concentrations is observed, with lowest annual mean concentrations at remote sites (< 0.2 μg m-3 and highest in the areas with intensive agriculture (up to 22 μg m-3), while NH4+ concentrations show less spatial variability (e.g. range of 0.14 to 1.8 μg m-3 annual mean in 2005). Temporally, NH3 concentrations are influenced by environmental conditions and local emission sources. In particular, peak NH3 concentrations are observed in summer at background sites (defined by 5 km grid average NH3 emissions < 1 kg N ha-1 yr-1 and in areas dominated by sheep farming, driven by increased volatilization of NH3 in warmer summer temperatures. In areas where cattle, pig and poultry farming is dominant, the largest NH3 concentrations are in spring and autumn, matching periods of manure application to fields. By contrast, peak concentrations of NH4+ aerosol occur in spring, associated with long-range transboundary sources. An estimated decrease in NH3 emissions by 16%between 1998 and 2014 was reported by the UK National Atmospheric Emissions Inventory. Annually averaged NH3 data from NAMN sites operational over the same period (n=59)show an indicative downward trend, although the reduction in NH3 concentrations is smaller and non-significant: Mann–Kendall (MK), -6.3 %; linear regression(LR), -3.1 %. In areas dominated by pig and poultry farming, a significant reduction in NH3 concentrations between 1998 and 2014 (MK: -22 %; LR: -21 %, annually averaged NH3/ is consistent with, but not as large as the decrease in estimated NH3 emissions from this sector over the same period (-39 %). By contrast, in cattle-dominated areas there is a slight upward trend (non-significant) in NH3 concentrations (MK: +12 %; LR: +3.6 %, annually averaged NH3, despite the estimated decline in NH3 emissions from this sector since 1998 (-11 %). At background and sheep-dominated sites, NH3 concentrations increased over the monitoring period. These increases (non-significant) at background (MK: C17 %; LR: C13 %, annually averaged data) and sheep-dominated sites (MK: +15 %; LR: +19 %, annually averaged data) would be consistent with the concomitant reduction in SO2 emissions over the same period, leading to a longer atmospheric lifetime of NH3, thereby increasing NH3 concentrations in remote areas. The observations for NH3 concentrations not decreasing as fast as estimated emission trends are consistent with a larger downward trend in annual particulate NH4+ concentrations (1999–2014: MK: -47 %; LR: -49 %, p < 0.01, n=23), associated with a lower formation of particulate NH4+ in the atmosphere from gas phase NH3

    Agroforestry systems for ammonia air quality management

    Get PDF
    Air pollution can lead to environmental impacts. Over the past decades there have been some success stories reducing pollutant emission, namely sulphur dioxide (SO2). However, impacts on ecosystems from atmospheric nitrogen (N) pollution are still seen as a major threat for European biodiversity. Across Europe over 70% of Natura 2000 sites are at risk for eutrophication with over 70% of the Natura 2000 area in Europe (EU28( exceeding critical loads for nutrient nitrogen deposition. Agricultural ammonia is a key contributor to the threat to these sites due to the close proximity of agricultural activities and protected sites. Source attribution modelling using an atmospheric transport model showed that agricultural livestock production in the UK is the dominant nitrogen source for N disposition across the UK Natura 2000 network. Nearly 90% of all sites had livestock as their dominant source, contributing 32% of the total nitrogen deposition across the whole network. 76% of all Special Areas of Conservation (SAC) sites exceeded their critical load for nutrient nitrogen, representing 74% of the entire SAC area. The extent of exceedance is also notable with many sites experiencing depositions of >50 kg N/ha/yr over the critical load. the situation for acidity critical load exceedance is less sever, by 51% of sites are still exeeded. Legislation to regulate pollutant emissions to air and protect biodiversity are often not integrated, and there has been no common European approach for determining the impacts of nitrogen deposition on individual Natura sites, or on conservation status. Off-site sources of air pollution present difficulties in assessing and attributing impacts, because deposition can result from local sources (1-2 km), or very far away sources (>1000 kms). Managing nitrogen losses on the farm and improving the efficient use of nitrogen are key components for overall reduction in NH3 emissions. Many nitrogen management options are available to abate ammonia from agricultural activities. On the one hand, technical and management measures include controlling emissions from manure storage and spreading, livestock feeding strategies, and improving housing systems. Trees, on the other hand, are effective scavengers of both gaseous and particulate pollutants from the atmosphere, making tree belts potentially effective landscape features to support ammonia abatement strategies. Using a coupled deposition and turbulence model the recapture efficiency of tree planting around ammonia sources was estimated. Using different canopy structure scenarios, tree depths and differing leaf area density (LAD) and leaf are index (LAI) were adjusted for a main canopy and a backstop canopy. Recapture efficiency for ammonia ranged from 27% (trees planted around housing systems), up to 60% (under-story livestock silvopastoral systems). Practical recapture potential was set at 20% and 40% for housing and silvopastoral systems respectively. Model results from scaling up to national level suggest that tree planting in hot spot areas of ammonia emissions would lead to reduced N deposition on nearby sensitive habitats. Scenarios for on-farm emission control through tree planting showed national reductions in nitrogen deposition to semi-natural areas of 0.14% (0.2 kt N-NHx) to 2.2% (3.15 kt N-NHx). Scenarios mitigating emissions from cattle and pig housing yielded the highest reductions. The afforestation strategy showed national-scale emission reductions of 6% (8.4 kt N-NHx) to 11% (15.7 kt N-NHx) for 25% and 50% afforestation scenarios respectively. Increased capture by the planted trees also generated an added benefit of reducing long-range transport effects, including a decrease in wet deposition of up to 3.7 kt N-NHx (4.6%) and a decrease in export from the UK of up to 8.3 kt N-NHx (6.8%). Agroforestry measures for ammonia abatement were shown to be cost-effective for both planting downwind of housing and in silvopastoral systems, when costs to society were taken into account. Planting trees was also cost-effective from a climate change perspective. Comparing the cost per kg of NH3 abated showed that planting trees is a method of ammonia emission mitigation comparable with other (technical) measures. The costs for planting trees downwind of housing were calculated at €2.6-7.3/kg NH3. Agroforestry for ammonia abatement offers multiple benefits for the farmer and synergistic effects for society as a whole including i) carbon sequestration. ii) visibility screening around housing units, iii) imporved animal welfare for silvopastoral systems, iv) reducing critical load exceedance on protected sites, v) price advantage of 'woodland chick' productions, vi) supporting the Industrial Emission Directive (IED) requirements for emission reduction, vii) supporting national afforestation policies. The results of this work support the notion that in the emerging discussion about the values of ecosystem services and the role of nature-based solution to tackle persistent environmental challenges, tree planting has a large potential in rural and urban environments
    corecore