226 research outputs found

    Mechanistic modelling of the vertical soil organic matter profile

    Get PDF
    Soil organic matter (SOM) constitutes a large global pool of carbon that may play a considerable role for future climate. The vertical distribution of SOM in the profile may be important due to depth-dependence of physical, chemical, and biological conditions, and links to physical processes such as heat and moisture transport. The aim of this thesis is to develop a dynamic and mechanistic representation of the vertical SOM profile that can be applied for large scale simulations as a part of global ecosystem and earth system models. A model structure called SOMPROF was developed that dynamically simulates the SOM profile based on above and below ground litter input, decomposition, bioturbation, and liquid phase transport. Furthermore, three organic surface horizons are explicitly represented. Since the organic matter transport processes have been poorly quantified in the past and are difficult to observe directly, the model was calibrated with a Bayesian approach for two contrasting temperate forest sites in Europe. Different types of data were included in the parameter estimation, including: organic carbon stocks and concentrations, respiration rates, and excess lead-210 activity. The calibrations yielded good fits to the observations, and showed that the two sites differ considerably with respect to the relevance of the different processes. These differences agree well with expectations based on local conditions. However, the results also demonstrate the difficulties arising from convolution of the processes. Several parameters are poorly constrained and for one of the sites, several distinct regions in parameter space exist that yield acceptable fit. In a subsequent study it was found that radiocarbon observations can offer much additional constraint on several parameters, most importantly on the turnover rate of the slowest SOM fraction. Additionally, for one site, a prognostic simulation until 2100 was performed using the resulting a posterioriparameter distribution, This showed that different parts of the SOM profile can respond differently to increasing temperatures and litter input. In conclusion, the SOMPROF model, combined with the Bayesian calibration scheme, offers valuable insights into the relevance of the different mechanisms to the SOM profile. However, equifinality remains a challenge, particularly for distinguishing different SOM transport processes. Improved representation of liquid phase transport and incorporation of additional observations may reduce these problems. In the future, SOMPROF can be incorporated into a terrestrial ecosystem model and calibration results can be used when deriving parameter sets for large scale application.</p

    On coexistence : a causal approach to diversity and stability in grassland vegetation

    Get PDF
    Ways of explaining coexistence of plant species in grassland are discussed. By adapting the competition model of De Wit (1960) it is shown that in various more complicated situations competition may lead to stable equilibria. Conditions for stable equilibrium between species in a homogeneous environment are derived from a model of multiple resource competition with complementary resources. This simple model explains complex patterns and processes in vegetation in terms of physiological differences and interactions between species.Competition experiments in the field show that Plantago lanceolata and Chrysanthemum leucanthemum occupy partly different niches in time. The yield of P.lanceolata decreased after two years, probably by senescence and auto-inhibition. The reaction of C. leucanthemum to this caused high Relative Yield Total (RYT), but there was no equilibrium.Attempts to prove experimentally the existence of a stable equilibrium point under the equilibrium conditions derived from the model of multiple resource competition were not successful, because none of the combinations of species and nutrients investigated met the equilibrium conditions. However, the results of experiments in which P. Lanceolata and Sanguisorba minor were competing for potassium and magnesium show that competitive ability depends on the composition of the nutrient solution, and that equilibrium is likely to be attained with other, more suitable combinations of species and nutrients

    Modeling the Effects of Future Growing Demand for Charcoal in the Tropics

    Get PDF
    Global demand for charcoal is increasing mainly due to urban population in developing countries. More than half the global population now lives in cities, and urban-dwellers are restricted to charcoal use because of easiness of production, access, transport, and tradition. Increasing demand for charcoal, however, may lead to increasing impacts on forests, food, and water resources, and may even create additional pressures on the climate system. Here we assess how different charcoal scenarios based on the Shared Socio-economic Pathways (SSP) relate to potential biomass supply. For this, we use the energy model TIMER to project the demand for fuelwood and charcoal for different socio-economic pathways for urban and rural populations, globally, and for four tropical regions (Central America, South America, Africa and Indonesia). Second, we assess whether the biomass demands for each scenario can be met with current and projected forest biomass estimated with remote sensing and modeled Net Primary Productivity (NPP) using a Dynamic Global Vegetation Model (LPJ-GUESS). Currently one third of residential energy use is based on traditional bioenergy, including charcoal. Globally, biomass needs by urban households by 2100 under the most sustainable scenario, SSP1, are of 14.4 mi ton biomass for charcoal plus 17.1 mi ton biomass for fuelwood (31.5 mi ton biomass in total). Under SSP3, the least sustainable scenario, we project a need of 205 mi tons biomass for charcoal plus 243.8 mi ton biomass for fuelwood by 2100 (total of 450 mi ton biomass). Africa and South America contribute the most for this biomass demand, however, all areas are able to meet the demand. We find that the future of the charcoal sector is not dire. Charcoal represents a small fraction of the energy requirements, but its biomass demands are disproportionate and in some regions require a large fraction of forest. This could be because of large growing populations moving to urban areas, conversion rates, production inefficiencies, and regions that despite available alternative energy sources still use a substantial amount of charcoal. We present a framework that combines Integrated Assessment Models and local conditions to assess whether a sustainable sector can be achieved

    From exercise intolerance to functional improvement: The second wind phenomenon in the identification of McArdle disease

    Get PDF
    McArdle disease is the most common of the glycogen storage diseases. Onset of symptoms is usually in childhood with muscle pain and restricted exercise capacity. Signs and symptoms are often ignored in children or put down to 'growing pains' and thus diagnosis is often delayed. Misdiagnosis is not uncommon because several other conditions such as muscular dystrophy and muscle channelopathies can manifest with similar symptoms. A simple exercise test performed in the clinic can however help to identify patients by revealing the second wind phenomenon which is pathognomonic of the condition. Here a patient is reported illustrating the value of using a simple 12 minute walk test.RSS is funded by Ciências sem Fronteiras/CAPES Foundation. The authors would like to thank the Association for Glycogen Storage Disease (UK), the EUROMAC Registry funded by the European Union, the Muscular Dystrophy Campaign, the NHS National Specialist Commissioning Group and the Myositis Support Group for funding

    The interannual variability of Africa's ecosystem productivity: a multi-model analysis

    Get PDF
    We are comparing spatially explicit process-model based estimates of the terrestrial carbon balance and its components over Africa and confront them with remote sensing based proxies of vegetation productivity and atmospheric inversions of land-atmosphere net carbon exchange. Particular emphasis is on characterizing the patterns of interannual variability of carbon fluxes and analyzing the factors and processes responsible for it. For this purpose simulations with the terrestrial biosphere models ORCHIDEE, LPJ-DGVM, LPJ-Guess and JULES have been performed using a standardized modeling protocol and a uniform set of corrected climate forcing data. While the models differ concerning the absolute magnitude of carbon fluxes, we find several robust patterns of interannual variability among the models. Models exhibit largest interannual variability in southern and eastern Africa, regions which are primarily covered by herbaceous vegetation. Interannual variability of the net carbon balance appears to be more strongly influenced by gross primary production than by ecosystem respiration. A principal component analysis indicates that moisture is the main driving factor of interannual gross primary production variability for those regions. On the contrary in a large part of the inner tropics radiation appears to be limiting in two models. These patterns are corroborated by remotely sensed vegetation properties from the SeaWiFS satellite sensor. Inverse atmospheric modeling estimates of surface carbon fluxes are less conclusive at this point, implying the need for a denser network of observation stations over Africa.JRC.DDG.H.3-Global environement monitorin
    • …
    corecore