53 research outputs found

    Community detection in multiplex networks using locally adaptive random walks

    Full text link
    Multiplex networks, a special type of multilayer networks, are increasingly applied in many domains ranging from social media analytics to biology. A common task in these applications concerns the detection of community structures. Many existing algorithms for community detection in multiplexes attempt to detect communities which are shared by all layers. In this article we propose a community detection algorithm, LART (Locally Adaptive Random Transitions), for the detection of communities that are shared by either some or all the layers in the multiplex. The algorithm is based on a random walk on the multiplex, and the transition probabilities defining the random walk are allowed to depend on the local topological similarity between layers at any given node so as to facilitate the exploration of communities across layers. Based on this random walk, a node dissimilarity measure is derived and nodes are clustered based on this distance in a hierarchical fashion. We present experimental results using networks simulated under various scenarios to showcase the performance of LART in comparison to related community detection algorithms

    Analysis of group evolution prediction in complex networks.

    Full text link
    In the world, in which acceptance and the identification with social communities are highly desired, the ability to predict the evolution of groups over time appears to be a vital but very complex research problem. Therefore, we propose a new, adaptable, generic, and multistage method for Group Evolution Prediction (GEP) in complex networks, that facilitates reasoning about the future states of the recently discovered groups. The precise GEP modularity enabled us to carry out extensive and versatile empirical studies on many real-world complex / social networks to analyze the impact of numerous setups and parameters like time window type and size, group detection method, evolution chain length, prediction models, etc. Additionally, many new predictive features reflecting the group state at a given time have been identified and tested. Some other research problems like enriching learning evolution chains with external data have been analyzed as well

    A degree centrality in multi-layered social network

    Get PDF
    Multi-layered social networks reflect complex relationships existing in modern interconnected IT systems. In such a network each pair of nodes may be linked by many edges that correspond to different communication or collaboration user activities. Multi-layered degree centrality for multi-layered social networks is presented in the paper. Experimental studies were carried out on data collected from the real Web 2.0 site. The multi-layered social network extracted from this data consists of ten distinct layers and the network analysis was performed for different degree centralities measures

    Quantifying layer similarity in multiplex networks: A systematic study

    Full text link
    © 2018 The Authors. Computing layer similarities is an important way of characterizing multiplex networks because various static properties and dynamic processes depend on the relationships between layers. We provide a taxonomy and experimental evaluation of approaches to compare layers in multiplex networks. Our taxonomy includes, systematizes and extends existing approaches, and is complemented by a set of practical guidelines on how to apply them

    Strategic distribution of seeds to support diffusion in complex networks

    Full text link
    © 2018 Jankowski et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Usually, the launch of the diffusion process is triggered by a few early adopters–i.e., seeds of diffusion. Many studies have assumed that all seeds are activated once to initiate the diffusion process in social networks and therefore are focused on finding optimal ways of choosing these nodes according to a limited budget. Despite the advances in identifying influencing spreaders, the strategy of activating all seeds at the beginning might not be sufficient in accelerating and maximising the coverage of diffusion. Also, it does not capture real scenarios in which marketing campaigns continuously monitor and support the diffusion process by seeding more nodes. More recent studies investigate the possibility of activating additional seeds as the diffusion process goes forward. In this work, we further examine this approach and search for optimal ways of distributing seeds during the diffusion process according to a pre-allocated seeding budget. Theoretically, we show that a universally best solution does not exist, and we prove that finding an optimal distribution of supporting seeds over time for a particular network is an NP-hard problem. Numerically, we evaluate several seeding strategies on different networks regarding maximising the coverage and minimising the spreading time. We find that each network topology has a best strategy given some spreading parameters. Our findings can be crucial in identifying the best strategies for budget allocation in different scenarios such as marketing or political campaigns

    TRANSFoRm eHealth solution for quality of life monitoring.

    Get PDF
    Patient Recorded Outcome Measures (PROMs) are an essential part of quality of life monitoring, clinical trials, improvement studies and other medical tasks. Recently, web and mobile technologies have been explored as means of improving the response rates and quality of data collected. Despite the potential benefit of this approach, there are currently no widely accepted standards for developing or implementing PROMs in CER (Comparative Effectiveness Research). Within the European Union project Transform (Translational Research and Patient Safety in Europe) an eHealth solution for quality of life monitoring has been developed and validated. This paper presents the overall architecture of the system as well as a detailed description of the mobile and web applications

    Community Structure Characterization

    Get PDF
    This entry discusses the problem of describing some communities identified in a complex network of interest, in a way allowing to interpret them. We suppose the community structure has already been detected through one of the many methods proposed in the literature. The question is then to know how to extract valuable information from this first result, in order to allow human interpretation. This requires subsequent processing, which we describe in the rest of this entry
    corecore