91 research outputs found

    Computational techniques in tribology and material science at the atomic level

    Get PDF
    Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented

    Modeling of high entropy alloys of refractory elements

    Get PDF
    Reverting the traditional process of developing new alloys based on one or two single elements with minority additions, the study of high entropy alloys (HEA) (equimolar combinations of many elements) has become a relevant and interesting new field of research due to their tendency to form solid solutions with particular properties in the absence of intermetallic phases. Theoretical or modeling studies at the atomic level on specific HEA, describing the formation, structure, and properties of these alloys are limited due to the large number of constituents involved. In this work we focus on HEA with refractory elements showing atomistic modeling results for W-Nb-Mo-Ta and W-Nb-Mo-Ta-V HEA, for which experimental background exists. An atomistic modeling approach is applied for the determination of the role of each element and identification of the interactions and features responsible for the transition to the high entropy regime. Results for equimolar alloys of 4 and 5 refractory elements, for which experimental results exist, are shown. A straightforward algorithm is introduced to interpret the transition to the high entropy regime.Fil: del Grosso, Mariela Fernanda. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bozzolo, G.. Loyola University Maryland (lum);Fil: Mosca, H. O.. Comisión Nacional de Energía Atómica; Argentin

    Effects of anharmonic strain on phase stability of epitaxial films and superlattices: applications to noble metals

    Full text link
    Epitaxial strain energies of epitaxial films and bulk superlattices are studied via first-principles total energy calculations using the local-density approximation. Anharmonic effects due to large lattice mismatch, beyond the reach of the harmonic elasticity theory, are found to be very important in Cu/Au (lattice mismatch 12%), Cu/Ag (12%) and Ni/Au (15%). We find that is the elastically soft direction for biaxial expansion of Cu and Ni, but it is for large biaxial compression of Cu, Ag, and Au. The stability of superlattices is discussed in terms of the coherency strain and interfacial energies. We find that in phase-separating systems such as Cu-Ag the superlattice formation energies decrease with superlattice period, and the interfacial energy is positive. Superlattices are formed easiest on (001) and hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the formation energy of superlattices increases with period, and interfacial energies are negative. These superlattices are formed easiest on (001) or (110) and hardest on (111) substrates. For Ni-Au we find a hybrid behavior: superlattices along and like in phase-separating systems, while for they behave like in ordering systems. Finally, recent experimental results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys, immiscible in the bulk form, are explained in terms of destabilization of the phase separated state due to lattice mismatch between the substrate and constituents.Comment: RevTeX galley format, 16 pages, includes 9 EPS figures, to appear in Physical Review

    Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both

    Get PDF
    Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16–2.61) and patients with dementia (HR 1.75, 95% CI 1.06–2.90) had a higher risk of death at one year. The Kaplan–Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population

    Recommendations for the quantitative analysis of landslide risk

    Get PDF
    This paper presents recommended methodologies for the quantitative analysis of landslide hazard, vulnerability and risk at different spatial scales (site-specific, local, regional and national), as well as for the verification and validation of the results. The methodologies described focus on the evaluation of the probabilities of occurrence of different landslide types with certain characteristics. Methods used to determine the spatial distribution of landslide intensity, the characterisation of the elements at risk, the assessment of the potential degree of damage and the quantification of the vulnerability of the elements at risk, and those used to perform the quantitative risk analysis are also described. The paper is intended for use by scientists and practising engineers, geologists and other landslide experts

    GROWTH MODE OF Sn ON A AU(111) SUBSTRATE

    No full text
    Atomistic simulations of low coverage Sn growth on Au(111) using the Bozzolo–Ferrante–Smith (BFS) method for alloys are presented. Simulated annealing and atom-by-atom analysis of the energetics explains the close competition between the experimentally observed surface alloying and layer-by-layer growth.Surface alloying, growth mode, tin, gold, atomistic simulations
    • …
    corecore