35 research outputs found

    The effect of climate change on the carbon balance between photosynthesis and respiration in Antarctic microalgae

    Get PDF
    The biological process of the carbon cycle in the Antarctic Ocean is controlled by the photosynthetic activity of the primary producers. The amount of fixed carbon does not only depend on the photosynthetic activity but also on the carbon losses due to respiration. Thus, the ratio photosynthesis to respiration (rP/R) is an important parameter to predict the effect of climate change on the Antarctic ecosystem. Indeed, the ongoing changes in climate change are influencing the dynamics of environmental conditions, which has tremendous effects on the phytoplankton community. Therefore, two ecologically relevant species from the Southern Ocean were here investigated: the diatom Chaetoceros sp. and the prymnesiophyte Phaeocystis antarctica, studying the changes in the rP/R under global climate change conditions. Three main parameters were examined i.e temperature, salinity and iron limitation. The P/R ratio was significantly affected by temperature, while salinity had only a secondary importance, although with species-specific differences. More specifically, the values were ranging from 12.3 to 7.5 for Chaetoceros sp. and from 12.4 to 2.5 for P. antarctica. The changes in this ratio were principally due to variations in respiration, rather than in photosynthesis. Chaetoceros sp. appears to be less flexible in the regulation of the extent of photoprotective mechanisms (non-photochemical quenching and alternative electrons), but its photoprotective level was generally higher than in P. antarctica. Regarding iron limitation, data were successfully collected only for Chaetoceros sp.. The P/R ratio, equal to 2.8, did not change under iron limitation, with iron limited cells showing a very efficient acclimation to the lowered assimilatory metabolism by decreasing their respiratory losses

    Overview of the MOSAiC expedition:Ecosystem

    Get PDF
    An international and interdisciplinary sea ice drift expedition, the ‘The Multidisciplinary drifting Observatory for the Study of Arctic Climate‘ (MOSAiC), was conducted from October 2019 to September 2020. The aim of MOSAiC was to study the interconnected physical, chemical and biological characteristics and processes from the atmosphere to the deep sea of the central Arctic system. The ecosystem team addressed current knowledge gaps and explored unknown biological properties over a complete seasonal cycle focusing on three major research areas: biodiversity, biogeochemical cycles and linkages to the environment. In addition to the coverage of core properties along a complete seasonal cycle, dedicated projects covered specific processes and habitats, or organisms on higher taxonomic or temporal resolution. A wide range of sampling approaches from sampling, sea ice coring, lead sampling to CTD rosette-based water sampling, plankton nets, ROVs and acoustic buoys was applied to address the science objectives. Further, a wide range of process-related measurements to address e.g. productivity patterns, seasonal migrations and diversity shifts were conducted both in situ and onboard RV Polarstern. This paper provides a detailed overview of the sampling approaches used to address the three main science objectives. It highlights the core sampling program and provides examples of two habitat- or process-specific projects. First results presented include high biological activities in winter time and the discovery of biological hotspots in underexplored habitats. The unique interconnectivity of the coordinated sampling efforts also revealed insights into cross-disciplinary interactions like the impact of biota on Arctic cloud formation. This overview further presents both lessons learned from conducting such a demanding field campaign and an outlook on spin-off projects to be conducted over the next years

    Overview of the MOSAiC expedition:Ecosystem

    Get PDF
    An international and interdisciplinary sea ice drift expedition, the ‘The Multidisciplinary drifting Observatory for the Study of Arctic Climate‘ (MOSAiC), was conducted from October 2019 to September 2020. The aim of MOSAiC was to study the interconnected physical, chemical and biological characteristics and processes from the atmosphere to the deep sea of the central Arctic system. The ecosystem team addressed current knowledge gaps and explored unknown biological properties over a complete seasonal cycle focusing on three major research areas: biodiversity, biogeochemical cycles and linkages to the environment. In addition to the coverage of core properties along a complete seasonal cycle, dedicated projects covered specific processes and habitats, or organisms on higher taxonomic or temporal resolution. A wide range of sampling approaches from sampling, sea ice coring, lead sampling to CTD rosette-based water sampling, plankton nets, ROVs and acoustic buoys was applied to address the science objectives. Further, a wide range of process-related measurements to address e.g. productivity patterns, seasonal migrations and diversity shifts were conducted both in situ and onboard RV Polarstern. This paper provides a detailed overview of the sampling approaches used to address the three main science objectives. It highlights the core sampling program and provides examples of two habitat- or process-specific projects. First results presented include high biological activities in winter time and the discovery of biological hotspots in underexplored habitats. The unique interconnectivity of the coordinated sampling efforts also revealed insights into cross-disciplinary interactions like the impact of biota on Arctic cloud formation. This overview further presents both lessons learned from conducting such a demanding field campaign and an outlook on spin-off projects to be conducted over the next years

    Overview of the MOSAiC expedition:Ecosystem

    Get PDF
    An international and interdisciplinary sea ice drift expedition, the ‘The Multidisciplinary drifting Observatory for the Study of Arctic Climate‘ (MOSAiC), was conducted from October 2019 to September 2020. The aim of MOSAiC was to study the interconnected physical, chemical and biological characteristics and processes from the atmosphere to the deep sea of the central Arctic system. The ecosystem team addressed current knowledge gaps and explored unknown biological properties over a complete seasonal cycle focusing on three major research areas: biodiversity, biogeochemical cycles and linkages to the environment. In addition to the coverage of core properties along a complete seasonal cycle, dedicated projects covered specific processes and habitats, or organisms on higher taxonomic or temporal resolution. A wide range of sampling approaches from sampling, sea ice coring, lead sampling to CTD rosette-based water sampling, plankton nets, ROVs and acoustic buoys was applied to address the science objectives. Further, a wide range of process-related measurements to address e.g. productivity patterns, seasonal migrations and diversity shifts were conducted both in situ and onboard RV Polarstern. This paper provides a detailed overview of the sampling approaches used to address the three main science objectives. It highlights the core sampling program and provides examples of two habitat- or process-specific projects. First results presented include high biological activities in winter time and the discovery of biological hotspots in underexplored habitats. The unique interconnectivity of the coordinated sampling efforts also revealed insights into cross-disciplinary interactions like the impact of biota on Arctic cloud formation. This overview further presents both lessons learned from conducting such a demanding field campaign and an outlook on spin-off projects to be conducted over the next years

    Overview of the MOSAiC expedition:Ecosystem

    Get PDF
    An international and interdisciplinary sea ice drift expedition, the ‘The Multidisciplinary drifting Observatory for the Study of Arctic Climate‘ (MOSAiC), was conducted from October 2019 to September 2020. The aim of MOSAiC was to study the interconnected physical, chemical and biological characteristics and processes from the atmosphere to the deep sea of the central Arctic system. The ecosystem team addressed current knowledge gaps and explored unknown biological properties over a complete seasonal cycle focusing on three major research areas: biodiversity, biogeochemical cycles and linkages to the environment. In addition to the coverage of core properties along a complete seasonal cycle, dedicated projects covered specific processes and habitats, or organisms on higher taxonomic or temporal resolution. A wide range of sampling approaches from sampling, sea ice coring, lead sampling to CTD rosette-based water sampling, plankton nets, ROVs and acoustic buoys was applied to address the science objectives. Further, a wide range of process-related measurements to address e.g. productivity patterns, seasonal migrations and diversity shifts were conducted both in situ and onboard RV Polarstern. This paper provides a detailed overview of the sampling approaches used to address the three main science objectives. It highlights the core sampling program and provides examples of two habitat- or process-specific projects. First results presented include high biological activities in winter time and the discovery of biological hotspots in underexplored habitats. The unique interconnectivity of the coordinated sampling efforts also revealed insights into cross-disciplinary interactions like the impact of biota on Arctic cloud formation. This overview further presents both lessons learned from conducting such a demanding field campaign and an outlook on spin-off projects to be conducted over the next years

    Thin and transient meltwater layers and false bottoms in the Arctic sea ice pack—Recent insights on these historically overlooked features

    Get PDF
    The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet long-lasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material. The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity

    The effect of climate change on the carbon balance between photosynthesis and respiration in Antarctic microalgae

    Get PDF
    The biological process of the carbon cycle in the Antarctic Ocean is controlled by the photosynthetic activity of the primary producers. The amount of fixed carbon does not only depend on the photosynthetic activity but also on the carbon losses due to respiration. Thus, the ratio photosynthesis to respiration (rP/R) is an important parameter to predict the effect of climate change on the Antarctic ecosystem. Indeed, the ongoing changes in climate change are influencing the dynamics of environmental conditions, which has tremendous effects on the phytoplankton community. Therefore, two ecologically relevant species from the Southern Ocean were here investigated: the diatom Chaetoceros sp. and the prymnesiophyte Phaeocystis antarctica, studying the changes in the rP/R under global climate change conditions. Three main parameters were examined i.e temperature, salinity and iron limitation. The P/R ratio was significantly affected by temperature, while salinity had only a secondary importance, although with species-specific differences. More specifically, the values were ranging from 12.3 to 7.5 for Chaetoceros sp. and from 12.4 to 2.5 for P. antarctica. The changes in this ratio were principally due to variations in respiration, rather than in photosynthesis. Chaetoceros sp. appears to be less flexible in the regulation of the extent of photoprotective mechanisms (non-photochemical quenching and alternative electrons), but its photoprotective level was generally higher than in P. antarctica. Regarding iron limitation, data were successfully collected only for Chaetoceros sp.. The P/R ratio, equal to 2.8, did not change under iron limitation, with iron limited cells showing a very efficient acclimation to the lowered assimilatory metabolism by decreasing their respiratory losses
    corecore