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The biological process of the carbon cycle in the Antarctic Ocean is controlled by the 

photosynthetic activity of the primary producers. The amount of fixed carbon does not only 

depend on the photosynthetic activity but also on the carbon losses due to respiration. Thus, the 

ratio photosynthesis to respiration (rP/R) is an important parameter to predict the effect of 

climate change on the Antarctic ecosystem. Indeed, the ongoing changes in climate change are 

influencing the dynamics of environmental conditions, which has tremendous effects on the 

phytoplankton community. Therefore, two ecologically relevant species from the Southern 

Ocean were here investigated: the diatom Chaetoceros sp. and the prymnesiophyte Phaeocystis 

antarctica, studying the changes in the rP/R under global climate change conditions. Three 

main parameters were examined i.e temperature, salinity and iron limitation. The P/R ratio was 

significantly affected by temperature, while salinity had only a secondary importance, although 

with species-specific differences. More specifically, the values were ranging from 12.3 to 7.5 

for Chaetoceros sp. and from 12.4 to 2.5 for P. antarctica. The changes in this ratio were 

principally due to variations in respiration, rather than in photosynthesis. Chaetoceros sp. 

appears to be less flexible in the regulation of the extent of photoprotective mechanisms (non-

photochemical quenching and alternative electrons), but its photoprotective level was generally 

higher than in P. antarctica. Regarding iron limitation, data were successfully collected only 

for Chaetoceros sp.. The P/R ratio, equal to 2.8, did not change under iron limitation, with iron 

limited cells showing a very efficient acclimation to the lowered assimilatory metabolism by 

decreasing their respiratory losses.  
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Summary 
 

Anthropogenically increased CO2 emissions and climate change are believed to strongly 

influence the ecological status of the marine ecosystem. Particularly, the Southern Ocean 

(SO) plays an important role for Earth’s climate by controlling the amount of dissolved 

inorganic carbon stored in the ocean. This can be done through two important carbon pumps, 

one physical and the other biological. Although they are clearly interconnected, the focus of 

this thesis was on the biologic pump and, specifically, on the crucial contribution of the so-

called primary producers. These organisms constitute the basis of the food web and while few 

studies have investigated the photosynthetic activity of phytoplankton, there is only very 

scarce knowledge about the carbon losses due to respiration. The reason for this lack of 

information is principally attributable to methodological limitations. Photosynthesis can be 

assessed by 14C uptake, oxygen evolution or by fluorometric devices; nevertheless, a 

quantitative estimate of the respiration from phototrophs is still difficult. The few data present 

in literature report a great variability among different species in the ratio of photosynthesis to 

respiration (rP/R). Additionally, other factors such as temperature, nutrient availability (e.g. 

iron) and light are expected to influence the rP/R and consequently, the primary productivity.  

 

To fill this information gap, more measurements are required. Therefore, in this thesis, P/R 

ratios for ecologically relevant Antarctic species were measured in response to environmental 

conditions. For this purpose, two key species were investigated: the diatom Chaetoceros sp. 

and the prymnesiophyte Phaeocystis antarctica, both of which are ubiquitous in the SO. The 

former is able to thrive in the sea ice with cold and highly saline water, but also in meltwater; 

the latter has been observed in both deep and shallow mixed layers.  

 

To test the temperature and salinity dependence of rP/R, Chaetoceros sp. and two isolates of 

P. antarctica were grown at three different temperatures (i.e. -1 °C, 1°C and 4°C) and four 

different salt concentrations (i.e. 20, 35, 50 and 70 PSU). The photosynthesis (P) and 

respiration (R) rates were determined by oxygen evolution and consumption rates (Clark 

electrode), respectively. In addition, PAM-fluorescence analysis was used for estimation of 

the relative electron transport rate (rETR) and the potential of non-photochemical quenching 

(NPQ).  
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No clear trend in temperature or salinity-dependent changes in photosynthetic values in 

Chaetoceros sp. and P. antarctica were measured. In contrast to P, a general trend of 

increasing R, with the increase of growth temperature from 1 to 4°C at 35 PSU, was observed 

in both strains, in P. antarctica also at 50 PSU. These changes in R significantly influenced 

the temperature-dependent changes of the P/R ratio. Consequently, two major conclusions 

could be drawn: firstly, the changes in rP/R were primarily due to variations in R but not in P, 

and secondly, rP/R is primarily temperature-dependent, whereas the impact of the salinity is 

of minor importance. Additionally, this study also provides taxon-specific values of 

respiratory losses in SO phytoplankton.  

 

Accordingly, for all investigated experimental conditions, the respiratory losses in relation to 

gross primary production (GPP) were in the range of 8 – 14% in Chaetoceros sp., 8 – 25% 

and 8 – 33% in P. antarctica strain 764 and 109, respectively. The species-specific 

differences of rP/R were also evident under different seasonal conditions where P. antarctica 

showed significantly higher rP/R values in autumn/winter compared to spring/summer, 

whereas the season-specific rP/R values did not vary significantly in Chaetoceros sp..  

The present data set was used to calculate net primary production (NPP) for specific 

irradiance, temperature, and salinity combinations, which represent different seasonal 

conditions. The comparison of species-specific NPP for the different seasons showed a 

comparable pattern. The highest NPP was calculated for the ‘Summer’ condition (high 

irradiance, short dark period, and high water temperatures). Despite the large season-specific 

differences in rP/R, the comparison of the calculated NPP with season-specific rP/R and P 

values revealed that the NPP is clearly correlated with the P, but not with R, except for the 

‘Winter’ condition and this could be due to the very short light period of this condition.  

A positive NPP was calculated only for Chaetoceros sp. and P. antarctica strain 109. Possibly 

these algal strains are able to keep R at a minimum and to maintain the cells energetic balance 

during ‘Winter’ condition.  

 

A distinctive species-specific difference in the acclimation to different temperature and 

salinity combinations is based on the observation of lower variations of physiological 

parameters in Chaetoceros sp. than in P. antarctica. This could be a species-specific 

acclimation strategy, and the differences observed in the present study might reflect the 

specific adaptation of Antarctic phytoplankton to different environmental conditions,  
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e.g. to sea ice or highly stratified water conditions for Chaetoceros sp., in contrast to deeply 

mixed waters in the pelagic zone in P. antarctica. It was additionally intended to evaluate the 

effect of changes in rP/R on NPP, showing that there is no correlation between rP/R and NPP 

for different seasonal conditions. This was due to the finding that phytoplankton cells were 

able to keep respiratory losses relatively low, according to our data, R in the range of 10 – 

15% should represent realistic values to convert measured GPP in NPP under field conditions. 

With respect to the low level of respiratory losses, an accurate determination of 

photosynthesis rates becomes even more important. Additionally, the observation of a very 

different extent of alternative electron pathways in the comparison of Chaetoceros sp. and P. 

antarctica is a remarkable result. Thus, the estimation of NPP by the measurement of, for 

example, variable chlorophyll (Chl) a fluorescence in populations with different species 

composition and at different seasonal conditions could be significantly influenced by the 

activity of these alternative electron pathways. Nevertheless, it should be emphasized that 

changes of other environmental factors (e.g. nutrient availability, grazing pressure) may 

induce stronger variation of rP/R. In this case, the impact on NPP needs to be re-evaluated. 

 

The SO is also well known as being HNLC (high nutrients, low chlorophyll), where iron is 

recognised to be a major factor limiting primary production. Few studies are present in 

literature about the effect of iron limitation in SO phytoplankton, and well known is how this 

parameter negatively affect the physiology of the photosynthetic cells, e.g. decreasing the 

yield of photosynthetic efficiency (Fv/Fm) and reducing the Chl content per cell. 

Nevertheless, important information about respiration have not been reported yet. Therefore, 

in this thesis, the effect of iron availability on rP/R was investigated as a third parameter.  

 

Remarkably, working in an iron free environment is a tricky task: the risk of iron 

contamination is very high as iron is everywhere, algae with limited iron supply are difficult 

to cultivate and grow much slower than in rich media. For this reason, rP/R in Chaetoceros 

sp. was measured, but no data were successfully collected for the same parameter in P. 

antarctica.  

A novel approach was used for the first time in this study, combining chlorophyll a 

fluorescence, O2 evolution and particulate organic carbon production measurements to 

understand the effect of low iron availability on the usage of photosynthetic electrons in cell 

metabolism and, finally, in carbon production. 
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Chaetoceros sp. cells showed a very efficient acclimation to iron limitation by decreasing 

their respiratory losses. This compensates for the inevitable limitations of photosynthesis and 

the ratio of photosynthesis to respiration did not change in response to iron-deplete 

conditions. Further experiments with other important SO species, like P. antarctica, are 

necessary to understand the species-specificity of these effects, and more studies are needed 

as well to infer the influence of P/R ratio on NPP in dependence of iron availability.  

Nonetheless, a complete dataset on rP/R variability was successfully collected with 3 

important parameters in the SO (i.e. temperature, salinity and iron limitation), which are 

strongly affecting primary production under climate change conditions.  
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Zusammenfassung 
 

Es wird angenommen, dass der menschlich bedingte Anstieg von CO2 Emissionen und der 

Klimawandel das marine Ökosystem stark beeinflussen. Besonders der südliche Ozean spielt 

eine wichtige Rolle für das Klima der Erde durch die Kontrolle der Menge der aufgelösten 

anorganischen Kohlenstoffe, welche im Ozean eingespeichert sind. Das ist dank zweier 

wichtiger CO2 Pumpen möglich: einer physikalischen, einer biologischen. Obwohl sie 

offensichtlich gekoppelt sind, bezieht der Fokus dieser Doktorarbeit auf der biologischen 

Pumpe und, besonders auf dem entscheidenden Beitrag von sogenannten Primärproduzenten. 

Diese Organismen konstituieren die Grundlage für die Nahrungskette und, während einigen 

Studien die photosyntetische Aktivität von Phytoplankton untersucht haben, gibt es nur eine 

mangelnde Kenntnis von Kohlenstoffverluste durch Respiration. Der Grund für diese 

mangelhafte Information ist hauptsächlich bedingt durch methodologische Einschränkungen. 

Photosynthese ist schätzbar durch 14C Verbrauch, Sauerstoffentwicklung oder fluorometrische 

Apparate; nichtsdestotrotz ist eine quantitative Bestimmung der Respiration von Phototrophen 

noch schwierig. Die wenigen aktuellen Daten in der Literatur berichten von einer bedeutenden 

Variabilität zwischen unterschiedlichen Spezies in der Ratio von Photosynthese durch 

Respiration (rP/R). Zusätzlich wird erwartet, dass andere Faktoren wie Temperatur, 

Verfügbarkeit der Nährstoffe (z.B. Eisen) und Licht die rP/R und somit die Primärproduktion 

beeinflussen. Um diese Informationslücke zu füllen, sind weitere Messungen wichtig. 

Deshalb wurde in dieser Doktorarbeit die P/R Ratio von ökologisch relevanten Antarktischen 

Spezies, als Antwort auf umweltbedingte Bedingungen, gemessen. Zum diesem Zweck, 

wurden zwei wichtige Spezies untersucht: die Diatomee Chaetoceros sp. und die 

prymnesiophyte Phaeocystis antarctica, beide sind ubiquitäre im südlichen Ozean. Die erste 

prosperiert im Meereis mit kaltem und hoch salzigem Wasser, aber auch im Schmelzwasser; 

die zweite ist sowohl in tiefen als auch in flachen gemischten Schichtungen zu finden.  

 

Um die Abhängigkeit von Temperatur und Salzgehalt von rP/R zu testen, Chaetoceros sp. 

und zwei Stämme von P. antarctica wurden bei drei unterschiedlichen Temperaturen (d.h. -1 

°C, 1°C und 4°C) und vier unterschiedlichen Salzkonzentrationen (i.e. 20, 35, 50 und 70 PSU) 

herangezüchtet. Die Photosynthese (P) und Respiration (R) Raten wurden durch die Menge 

von Sauerstoffentwicklung bzw. Sauerstoffkonsum bestimmt (Clark Elektrode).  
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Zusätzlich wurden PAM-Fluoreszenz Analysen zur Bestimmung der relativen elektronischen 

Transportmenge (rETR) und dem Potenzial von non-photochemische quenching (NPQ) 

benutzt. Es wurden keine durch bestimmte Temperatur oder Salzgehalt bedingten 

Änderungen von photosynthetischen Werten bei Chaetoceros sp. und P. antarctica gemessen. 

Im Gegensatz zu P, ein genereller Trend von ansteigendem R, mit dem Anstieg der 

Wachstumstemperatur von 1 bis 4°C bei 35 PSU, wurde bei beiden Stämmen beobachtet, bei 

P. antarctica auch bei 50 PSU. Diese Änderungen von R beeinflussten die Temperatur 

bedingt Änderungen von P/R Ratio besonders. Daraus können zwei wichtige Fazite gezogen 

werden: zunächst hauptsächlich kamen die Änderungen von rP/R durch Änderungen von R 

nicht durch P zustande, und zweitens, rP/R ist vor allem temperaturbedingt, während die 

Wirkung des Salzgehalt von geringer Bedeutung ist. Nenneswert ist, dass diese Studie auch 

Taxon-spezifische Werte von respiratorischen Verlusten in SO Phytoplankton bereitstellt.  

 

Dementsprechend lagen für alle erforschten experimentellen Bedingungen, die 

respiratorischen Verluste bezüglich der Bruttoprimärproduktion (GPP) zwischen 8 – 14% bei 

Chaetoceros sp., 8 – 25% und 8 – 33% beim P. antarctica Stamm 764 bzw. 109. Die 

speziesspezifischen Unterschiede von rP/R waren auch unter unterschiedlichen saisonalen 

Bedingungen evident, wo P. antarctica zeigte bedeutsame höhere rP/R Werte im 

Herbst/Winter verglichen mit Frühling/Sommer zeigte, während sich die saisonabhängigen 

rP/R Werte nicht bedeutsam bei Chaetoceros sp. änderten.  

Die aktuellen Daten wurden zur Kalkulation der Nettoprimärproduktion (NPP) für spezifische 

Bestrahlungsstärke, Temperatur, und Salzgehalt- Kombinationen, welche unterschiedliche 

saisonale Bedingungen repräsentieren. Der Vergleich zwischen der speziesspezifische NPP zu 

unterschiedlichen Jahreszeiten zeigte ein vergleichbares Muster. Die höchste NPP wurde zu 

‘Sommer’-Bedingungen errechnet (hohe Bestrahlungsstärke, kurze dunkle Periode, und hohe 

Wassertemperaturen). Trotz der großen saisonabhängigen Unterschiede in rP/R, zeigte der 

Vergleich zwischen dem kalkulierten NPP mit saisonbedingten rP/R und P-Werte, dass NPP 

eindeutig mit P korrelierte, jedoch nicht mit R, außer zu ‘Winter’ Bedingungen, was aus der 

sehr kurzen Lichtperiode bei diesen Bedingungen resultieren könnte.  

Eine positive NPP wurde einzig für Chaetoceros sp. und P. antarctica Stamm 109 kalkuliert. 

Möglicherweise können diese Algenstämme R auf einem Minimum halten und die Zellen 

somit die Energiebalance während der ‘Winter’-Bedingungen aufrechterhalten.  
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Ein distinktiver speziesspezifischer Unterschied in der Akklimatisierung von 

unterschiedlichen Temperaturen und Salzgehalt Kombinationen basiert auf der Beachtung 

von niederen Variationen von physiologischen Parametern bei Chaetoceros sp. statt bei P. 

antarctica. Dies könnte eine speziesspezifische Akklimatisierungsstrategie sein, und die 

Unterschiede, die in der aktuellen Studie beobachtet wurden, könnten die spezifische 

Anpassung von Antarktischem Phytoplankton an unterschiedliche Umweltbedingungen 

wiederspiegeln, z.B. an Meereis oder hoch geschichtete Wasserbedingungen für Chaetoceros 

sp., im Gegensatz zu tiefem gemischtem Wasser in der pelagischen Zone in P. antarctica. 

Zusätzlich war es beabsichtig, die Wirkung von Änderungen in rP/R auf NPP zu beurteilen, 

um zu zeigen, dass keine Korrelation zwischen rP/R und NPP zu verschiedenen saisonalen 

Bedingungen besteht. Dies war bezüglich der Erkenntnis, dass Phytoplanktonzellen die 

respiratorischen Verluste relativ niedrig halten können, in Übereinstimmung mit unseren 

Daten, R zwischen 10 – 15% sollte realistische Werte repräsentieren, um gemessene GPP in 

NPP unter Feldbedingungen umzuwandeln. In Bezug auf das niedrige Niveau der 

respiratorischen Verluste, wird die genaue Bestimmung von Photosynthese Raten wird sogar 

wichtiger. Zudem ist die Beachtung von einer sehr unterschiedlichen Masse von alternativen 

Elektronenwegen im Vergleich zwischen Chaetoceros sp. und P. antarctica eine bedeutsames 

Ergebnis. Daher könnte die Bestimmung von NPP durch die Messung von, z.B. variabler 

Chlorophyll (Chl) a Fluoreszenz in Populationen mit unterschiedlicher Spezieskomposition 

und zu unterschiedlichen saisonalen Bedingungen bedeutend durch die Aktivität von diesen 

alternativen Elektronenwegen beeinflusst sein. Nichtsdestotrotz sollte hervorgehoben werden, 

dass die Änderungen von anderen Umweltfaktoren (e.g. Verfügbarkeit von Nährstoffen, 

streifender Druck) starker Änderungen von rP/R herbeiführen könnte. In diesen Fall müsste 

die Auswirkung auf NPP neu bewertet werden. 

 

Der Südliche Ozean (SO) ist auch bekannt als HNLC (= high nutrients, low chlorophyll), wo 

Eisen als Hauptfaktor für die Begrenzung der Primärproduction anerkannt ist. Einige Studien 

zum Effekt von Eisenmangel in SO Phytoplankton sind in der Literatur zu finden, und sehr 

bekannt ist wie dieser Parameter die Physiologie der photosynthetischen Zellen negativ 

beeinflusst, z.B. sinkender Ertrag von photosynthetischer Effizienz (Fv/Fm) und die 

Reduzierung des Chl-Gehalts pro Zelle. Dennoch sind wichtige Informationen bezüglich der 

Respiration noch nicht bekannt. Deswegen wurde in dieser Doktorarbeit die Wirkung von 

Eisenverfügbarkeit auf rP/R als dritter Parameter erforscht.  
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Die Arbeit in eisenfreien Umwelt ist eine komplizierte Aufgabe: das Risiko einer 

Eisenkontamination ist sehr hoch (Eisen ist überall), Algen sind mit einem limitiertem 

Eisenangebot schwierig zu kultivieren und wachsen viel langsamer als im eisenreichen 

Medium. Aus diesen Grund, wurde rP/R bei Chaetoceros sp. gemessen, aber keine Daten 

wurden für den gleichen Parameter in P. antarctica  gesammelt.  

Es wurde eine neue Vorgehensweise zum ersten Mal in dieser Studie eingesetzt, 

kombinierende Messungen aus Chlorophyll a Fluoreszenz, O2 Evolution und partikulärer 

organischer Kohlenstoffproduktion, um die Wirkung von niedriger Eisenverfügbarkeit in 

Bezug auf den Gebrauch von photosynthetischen Elektronen im Zellstoffwechsel und letztlich 

in der Kohlenstoffproduktion zum verstehen.  

 

Chaetoceros sp. Zellen zeigten eine sehr effiziente Akklimatisierung bei Eisenmangel durch 

die Reduzierung von respiratorischen Verlusten. Das kompensiert die unvermeidlichen 

Einschränkungen von Photosynthese und der Anteil von Photosynthese durch Respiration 

änderte sich nicht als Antwort auf die eisenärmeren Bedingungen. Zusätzliche Experimente 

mit anderen wichtigen SO Spezies, wie P. antarctica, sind erforderlich, um die Spezies- 

Spezifität auf diese Wirkungen zu verstehen. Weitere Studien sind notwendig, um die 

Wirkung der P/R Ratio auf NPP in Abhängigkeit der Eisenverfügbarkeit abzuleiten.  

Trotzdem ist es hier gelungen einen kompletten Databestand  von rP/R-Variabilitat mit den 

drei wichtigen Parametern im SO (d.h. Temperatur, Salzgehalt und Eisenmangel), welche die  

Primärproduktion unter klimatsch veränderten Bedingungen stark beeinflussen, zu sammeln.   
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1. Introduction  
 

1.1. The carbon cycle and climate change 

In the Earth system, carbon is continuously recycled through natural processes (Figure 1). 

Different processes take place at various rates: from short-term fluctuations, which occur daily 

and seasonally, to very long-term cycles, which occur over hundreds of millions of years. Four 

main reservoirs are responsible for interchanging carbon, i.e. the atmosphere, the terrestrial 

biosphere, oceans and fossil fuels. The different carbon reservoirs are closely inter-connected 

and therefore, strongly influence each other. The recent effects of climate change are currently 

modifying important characteristics of the carbon cycle. Due to global warming, atmospheric 

and water temperatures are rising, influencing both the abiotic and biotic parameters of the 

carbon cycle. The increasing atmospheric CO2 concentration is lowering the pH of sea water, 

causing ocean acidification, with dramatic consequences for the living organisms (e.g. 

bleaching of coral reefs, (Hughes et al. 2018)). The effects of such changes are still not 

completely understood, fueling more questions about the future adaptability and survival 

chances of not only marine organisms, but also the entire environment. 

 

Figure 1 - The global C cycle from NOAA (National Oceanic and Atmospheric Administration 

2019). The four carbon reservoirs are depicted. The dark arrows represent the interchange 

between reservoirs, the light arrows the all carbon cycle. 
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1.1.1. The increase in atmospheric CO2 
 

Humankind has been living on this planet for more than 2 million years, taking advantage of 

the resources present here. Since the beginning of the industrial revolution, a huge increase in 

greenhouse gas (GHG) emissions has occurred (Intergovernmental Panel on Climate Change 

2014). Nowadays, the presence of climate change is an important topic not only for scientists, 

but also for political and economic decision makers (Intergovernmental Panel on Climate 

Change 2018). Nevertheless, the estimation of the precise contribution of humans to climate 

change is not an easily solvable issue. Among the hazardous gases emitted methane (CH4), 

nitrite (NO2
-) and carbonic anhydride (CO2) can be enumerated. 

Long-term monitoring of trends in atmospheric carbon dioxide are available from NOAA Earth 

System Research Laboratory, where the atmospheric CO2 at Mauna Loa Observatory is 

regularly updated. While in 1959 the concentration of atmospheric CO2 was about 316 ppm 

(Keeling et al. 1976), the present data report a concentration above 415 ppm (Earth System 

Research Laboratory 2019). 

The atmospheric CO2 concentration is one of the key drivers of climate change. Therefore, 

several ambitious projects have been started to face challenging questions about climate change 

research. An example is the ‘Global carbon budget project’, with its first report in 2003, which 

has been yearly updated since then (e.g. Le Quéré et al. 2018). To understand how the increase 

of CO2 is affecting the global climate, not only estimations of carbon emitters (sources), but 

also carbon absorbers (sinks) are important (Figure 2). Flows of carbon between the above 

mentioned four reservoirs make the carbon cycle possible. For instance, plant biomass and 

photosynthesis take up CO2 on land, while respiration and fossil emission release CO2 in the 

atmosphere. Analogous processes take place also in the oceans, where phytplankton is 

responsible both for photosynthesis and respiration. On the one hand, part of the here produced 

biomass sinks in ocean sediments; on the other hand, bacterial respiration represents another 

source of carbon. Microbial respiration (source) is found also in soil, whereas fossil carbon 

(sink) can be here stored for ages. Any change in the cycle that shifts carbon out of one reservoir 

puts more carbon in the other reservoirs. Thus, the carbon cycle functions as long as carbon 

emissions (sources) and sequestrations (sinks) are in balance. Dramatic effect on climate change 

are registered, once fluxes are imbalanced. For example, changes that put carbon gases into the 

atmosphere result in warmer temperatures on Earth (Riebeek 2011). 
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Figure 2 - Schematic representation of the overall perturbation of the global carbon cycle 

caused by anthropogenic activities, averaged globally for the decade 2007–2016. In the 

figure, the values represent the imbalance inherent the emission from fossil fuels and industry, 

emissions from deforestation and other land-use change, the growth rate in atmospheric CO2 

concentration and the uptake of carbon by the sinks in the ocean and land reservoirs (Le 

Quéré et al. 2018). 
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1.1.2. The terrestrial and marine ecosystems as carbon sinks 
 

As represented in Figure 2 the two largest sinks on Earth are the vegetation on land masses and 

the oceans. 

It is well known that vegetation on Earth is an important reservoir to absorb CO2, through 

photosynthesis. During this process, plants use energy from sunlight to fix CO2 from the 

atmosphere to create biomass. In so doing, carbon is sequestered from the atmosphere and 

stored in the plant structures. Plants are also able to perform the inverted reaction: namely, 

release CO2 back to the atmosphere through respiration. The energy produced by 

photosynthesis can be stored in carbohydrate and used to gain energy thanks to respiration. 

Thus, carbon can be transferred between CO2 and organic material through a very basic left 

right arrow reaction (shown in a simplified version in equation 1). Respectively, photosynthesis 

occurs when the reaction proceeds to the right, while respiration occurs when the reaction 

proceeds to the left. 

 

6𝐶𝑂2  + 6𝐻2𝑂 +  𝑒𝑛𝑒𝑟𝑔𝑦 ↔  𝐶6𝐻12𝑂6  +  6𝑂2     (1) 

 

Terrestrial plants are, however, not the only photosynthetic organisms present on Earth. Indeed, 

a significant percentage of the net global photosynthesis, almost half of it, is made up from 

marine phytoplankton (Bowler et al. 2009). Despite the small size of these microorganisms, 

phytoplankton affect the carbon cycle significantly. These organisms, also called primary 

producers, are key players in the marine ecosystem. They constitute the basis of the food web, 

with not only direct effects on feeding of marine predators, but indirectly also affecting humans 

on Earth. Indeed, marine phytoplankton is contributing to the absorbance of anthropogenically 

produced CO2 through photosynthesis. The carbon sink of this organisms contributes to the 

deporting of carbon into the deep ocean, where it can be stored for a long time.  

Oceans are the major sink of carbon on Earth (Raven and Falkowski 1999), but the efficiency 

of the ‘biological pump’ is very much dependent on the relative proportion of organic and 

inorganic carbon leaving the surface mixed layer, which is controlled by ecological, 

biogeochemical and physical factors. Specifically, the ‘physical pump’ (see paragraph 1.2.1), 

contributes to maintain an equilibrium between CO2 in atmosphere and oceans.  
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However, with increasing anthropogenic CO2 emissions, the atmospheric CO2 invades the 

oceans causing a decrease of seawater pH, a process called “ocean acidification.” The lowered 

pH, but also the concomitant changes in other properties of the carbonate system, affects marine 

life and the cycling of carbon in the ocean (Wolf-Gladrow and Rost 2014).  

The importance of the topic led to massive effort to quantify the strength of the oceanic sink 

for anthropogenic CO2 (Sabine et al. 2004). Interestingly, comparing the beginning of this 

century with the 90s, even an increase in the ocean CO2 uptake was shown in a recent 

publication (Gruber et al. 2019). 

 

1.2. The Southern Ocean 
 

1.2.1. Carbon pumps in the Southern Ocean 
 

70% of the Earth is covered by water, and the Southern Ocean (SO) alone accounts for 10% of 

the entire global ocean, while it is responsible for about 40% of the entire anthropogenic carbon 

uptake (Landschützer et al. 2015). This uptake is possible thanks to the ‘ocean carbon pump’, 

defined for the first time in 1985 by Volk and Hoffert. Two main components of this pump are 

described: a physical-chemical and a biological one. The former, also called solubility pump, 

is a response to solubility differences of CO2 in warm and cold water (Levy et al. 2013). The 

latter enables the transfer of organic carbon from the surface to the deep ocean (Honjo et al. 

2014). Phytoplankton constitute the engine of the ‘biological pump’ (Chisholm 2000,  

Figure 3). 

 

The efficiency of the carbon pump and the consequent carbon sequestration to the deep ocean 

depends on the physical characteristics of the SO such as water temperature, extent of sea ice 

cover, wind speed, stratification, changes in nutrient dynamics, pH, light conditions, and 

salinity of surface waters. Climate-induced changes in the physical characteristics of the SO 

and the responses by phytoplankton differ substantially among environments (Turner et al. 

2014; Deppeler and Davidson 2017). 
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Figure 3 - The biological (on the left) and solubility (on the right) pump from Chisholm (2000). 

 

 

1.2.2. Seasonal variations in the Southern Ocean 
 

In the Southern Ocean, apart from climate change, seasonality plays an important role in 

affecting physical, chemical and biological factors. Light radiation is not constant during the 

year, but depends critically on the solar cycle. Seasonal snow and ice-cover periodically block 

sunlight from reaching polar ecosystems (Clark et al. 2013). Since photosynthesis is a light 

driven reaction, the irradiance represents a crucial factor in primary production. Sea ice itself 

constitutes one of the major factors controlling primary productivity (Smith and Comiso 2008). 

Not all organisms can survive in such a harsh environment, but some can exceptionally thrive 

here, as confirmed by the presence of ice algae (Thomas and Dieckmann 2002). The extent of 

Antarctic sea ice is extremely variable (Cavalieri and Parkinson 2008) and this is not only 

affecting light levels, which are extremely low in the ice matrix, but also temperatures and 

salinities, as depicted in Figure 4.  
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Figure 4 - Spatial and temporal evolution and decay of sea ice in the Antarctic marine 

ecosystem from Petrou and Ralph (2011). Temperature (°C), salinity (PSU) and irradiance (in 

μmol photons m–2 s–1) properties for each environment are tabulated. 

 

The lowest temperatures are found in brine channels ranging from -2 to below -20 °C. Sea 

surface temperatures in the SO, instead, range from 5 to -1.86 °C (Gäbler-Schwarz 2009). The 

increasing temperature influences the natural Antarctic characteristics, causing reduced ice 

cover and a rapid freshening of Antarctic bottom water (Rintoul 2007). Organisms able to thrive 

in a certain range of temperatures and salinities might not survive severe changes, driven by 

climate change. 

On the one hand, ocean surface salinities are relatively stable, varying from 33.5 to 34.9 

Practical Salinity Unit (PSU) in the open water (Smith et al. 2005). On the other hand, high 

salinity fluctuations are measured inside the ice column, reaching up to 200 PSU (Cox and 

Weeks 1983).  

Moreover, seasonal changes in open water area affect also the nutrient concentration in the SO. 

With the retreat of the sea ice, a rapid nutrient drawdown is observed, driven by the summer 

blooming of Antarctic phytoplankton (Arrigo et al. 1999).  
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Undoubtedly, SO phytoplankton is a major player in the global biogeochemical cycle of 

nutrients (Falkowski 1994; Litchman et al. 2015). The strong heterogeneity in the distribution 

and concentration of nutrients in the SO boosts the growth of multifaceted communities, which 

exhibits a plethora of diversified mechanisms to cope successfully with the changing 

conditions. In order to resolve the impact of these changes on the SO community, more studies 

about the SO phytoplankton assemblage, its key species, and the factors affect its formation, 

distribution and processes are required (Rizkallah Issak 2014; Boyd 2002). 

Such an interesting and variable ecological niche deserves more attention, although the 

complexity of this ecosystem represents a challenge for the researchers. The remote position of 

the SO and methodological restrictions have impeded more experiments. Nevertheless, with 

modern techniques and international efforts, the limitations of working in the Antarctic 

continent can be overcome.  

 

1.2.3. Southern Ocean and phytoplankton adaptation to iron 

limitation 
 

The Southern Ocean is well known as the world’s largest HNLC (=high nutrients, low 

chlorophyll) region. Although macronutrients like N and P are abundant there, the primary 

production is severely limited (Moore et al. 2013). The principal cause can be ascribed to iron 

limitation, controlling the structure of phytoplankton communities and the efficiency of the 

biological carbon pump (Petrou et al. 2016).  

Iron is essential for redox-based reactions, which include photosynthesis, respiration, and 

nitrate and sulfur utilization by phytoplankton (Raven 2013). These reactions are indispensable 

for the vitality of photosynthetic cells. Therefore, algae have developed alternative strategies to 

efficiently use the available iron. Morrissey and Bowler reviewed the iron utilization in marine 

cyanobacteria and eukaryotic algae, stressing peculiarities of the two domains and the existence 

of species-specific variances (Morrissey and Bowler 2012). Diatoms, for example, developed 

different strategies. One option is constituted by the decrease of the concentration of iron-rich 

photosystem I and cytochrome b6f complex, but not of photosystem II, as described for the 

oceanic diatom Thalassiosira oceanica. In so doing, the cellular iron requirement of the oceanic 

diatom is markedly decreased, but not its photosynthetic rates (Strzepek and Harrison 2004).  
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The marine diatom Phaeodactylum tricornutum, instead, appears to use metabolic 

reconfigurations to acclimate to low iron levels (Allen et al. 2008). Processes carried out by 

components rich in iron, such as photosynthesis, mitochondrial electron transport, and nitrate 

assimilation, are down-regulated; while gene clusters encoding for components of iron capture 

and uptake mechanisms are upregulated. Another strategy to decrease iron requirements 

involves the cell size reduction, significantly reducing the functionality of the two photosystems 

and electronic transport rates between them, rather than affecting pigment production 

(Morrissey and Bowler 2012).  

Antarctic species have to cope with dissolved iron concentration below 1 nM (Smetacek et al. 

1997), reason why their iron requirements are generally low. Strzepek and colleagues were the 

first, who focused on the adaptive strategies specifically adopted by Southern Ocean 

phytoplankton (Strzepek et al. 2011). They identified two distinct adaptations to reduce iron 

limitation in Antarctic diatoms: firstly, increasing the flux of bioavailable iron, e.g. through 

siderophores; secondly, reducing the biochemical requirements for iron. Other algal classes 

were investigated, such as the representative haptophyte Phaeocystis antarctica. In this case, 

growth and bloom forming of Phaeocystis ability stopped under limiting iron levels. Following 

iron supplementation, a fast recovery in growth and productivity is recorded (Marchetti et al. 

2012).  

For over 30 years, the important role of iron in Southern Ocean phytoplankton has been 

discussed. “The iron hypothesis” suggested that iron deficiency is limiting the productivity in 

Southern Ocean. Hence, phytoplankton is unable to take advantage of the excess surface nitrate 

and phosphate that, if used, could result in total Southern Ocean increase in production (Martin 

1990). To prove this hypothesis, iron fertilization experiments were conducted by adding iron 

compounds to the SO waters (Boyd et al. 2007; Baar et al. 2005). This artificial fertilization 

induced diatom-dominated phytoplankton blooms, accompanied by considerable carbon 

dioxide drawdown in the ocean surface layer. Although it was not possible to adequately resolve 

the fate of bloom biomass in these experiments, the authors postulated an increase of carbon 

fixation and export to the ocean bottom (Smetacek et al. 2012). Field studies have shown how 

iron concentration naturally affects the photophysiology of phytoplankton communities 

(Trimborn et al. 2015). Ex situ experiments have also investigated the photophysiology of 

natural phytoplankton assemblage, together with Fe and C uptake under iron limitation (Hoppe 

et al. 2013). The positive impact of iron repletion was observed also in single organisms during 

laboratory studies, both in diatoms (Petrou et al. 2014) and P. antarctica (Koch et al. 2019). 
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Nonetheless, due to their phylogenetic diversity, different phytoplankton taxa will likely 

respond in different ways (Collins et al. 2014). For instance, a decrease in the abundance of 

diatom is expected due to increased stratification in the future ocean (Bopp et al. 2005). Thus, 

it appears that some species are more sensitive than others, although more investigations are 

necessary. For ocean fertilization to become a viable option to sequester CO2, more extensive 

and targeted fieldwork are required. Better mathematical models of ocean biogeochemical 

processes are needed, both to interpret field observations and to make reliable predictions about 

the side effects of large-scale fertilization (Lampitt et al. 2008).   

Modifications in the marine carbon cycle are expected, due to rising temperatures, changes in 

nutrient availability and ocean acidification. The interplay betweeen these changing factors, as 

well as the extrapolation of their effects in the sequestration fluxes, represents one of the great 

challanges. A taxa-specific understanding of environmental controls of phytoplankton (Boyd et 

al. 2010), combined with a geographically and seasonally explicit understanding of food web 

structure and environmental changes, will be needed to gain a predictive understanding of the 

biological pump (Passow and Carlson 2012). 

 

1.2.4. Key players in the Southern Ocean phytoplankton 

 

Among the variety of species present in the SO, two taxa are extremely important for the 

biogeochemical cycle, namely diatoms and haptophytes. The former are primarily regulating 

the carbon and silicate cycle (Tréguer et al. 2018; Smetacek 1999), the latter the marine sulfur 

cycle (Schoemann et al. 2005). Significant taxon-specific differences exist in the 

photophysiology of the two clades. Studies reported differences in response to changes in 

irradiance (Arrigo et al. 2010; Kropuenske et al. 2010; Mills et al. 2010; van de Poll et al. 2011), 

iron limitation (Alderkamp et al. 2012) and ocean acidification (Trimborn et al. 2017; Beszteri 

et al. 2018). According to these studies, the haptophyta P. antarctica efficiently used light under 

low irradiance levels, while the diatoms Fragilariopsis cylindrus and Chaetoceros brevis, were 

better protected from photoinhibition under high light levels. The ecological niche occupancy 

might explain the characteristic photoacclimation strategies of the two taxonomic groups 

(Petrou et al. 2016). While P. antarctica thrives in the deeply mixed water column, F. cylindrus 

prospers in the shallow mixed layer depth.  



Introduction 

 

[22] 

 

The productivity and species composition of Antarctic phytoplankton community was 

investigated also by Heiden et al. (2019). In this case, the impact of ocean acidification and 

high solar radiation was examined, showing that P. antarctica might increase its 

competitiveness toward diatoms under ocean acidification, OA, irrespective of light 

availability. 

Not only spatial variances, but also seasonality (reviewed in 1.2.21.2.2) are playing a role in 

the success of one taxa over the other. As depicted in Figure 5, during the austral spring 

(September-November), the ice melts and the nutrients are used up. With the beginning of the 

summer (December) open water rises, together with primary productivity, to decrease again at 

the end of the season. Following those changes, more adaptable species can outcompete the 

others, taking advantage of more suitable characteristics, e.g. in nutrient utilization, light and 

temperature acclimations. 

 

 

Figure 5 - Seasonal variations in phytoplankton primary productivity, open water area and nutrient 

concentration from Petrou et al. (2016). 
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The whole picture becomes more complicated when the concomitant effects of other 

parameters, such as iron and CO2, are taken in consideration. Shifts in the phytoplankton 

community composition are detected (Feng et al. 2010), affecting not only the community 

structure itself, but also important biogeochemical parameters of this region. More experiments 

are needed to unravel the mechanisms driving such changes. Furthermore, the plasticity of the 

autochthonous species should not be taken for granted, while climate change threatens the 

equilibrium of the ecosystem. 

 

1.2.5. Climate change effects on Southern Ocean phytoplankton 

 

In recent decades, the oceans have undergone large physical and biogeochemical modifications 

in response to human induced global change, as revealed by a variety of in situ and remote 

sensing observations (Bopp et al. 2013). These changes encompass ocean surface warming, 

changes in ocean salinity, modifications of water density structure and stratification, as well as 

an increase in dissolved inorganic carbon concentrations and a decrease in seawater pH in 

response to ocean uptake of anthropogenic carbon (Doney 2010). Due to global warming and 

increased sea ice melt (Figure 6a and Figure 7), the SO surface waters are becoming warmer 

and fresh (Hauck et al. 2015). Globally, sea surface temperature has increased by about +0.7 

°C over the last 100 years and sea surface pH has declined by about 0.1 pH unit since pre-

industrial times (Bindoff et al. 2007).  

 

Figure 6 - Recent changes in ocean temperature. (A) Surface temperature anomaly for 

January 2010 relative to the mean for 1951–1980. (B) The same data presented in (A) as a 

function of latitude, marking the dramatic increase of temperatures at the poles [Credits: 

NASA Goddard Institute for Space Studies]. 
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Some of the most striking impacts of global climate change have appeared in polar oceans, 

where temperatures and acidities are changing at more than twice the global average (Hoegh-

Guldberg and Bruno 2010, Figure 6b). The physical and chemical modifications that are 

occurring have the potential to affect marine organisms and ecosystems; large shifts in species 

size, spatial range, and seasonality of primary production have been registered (Doney et al. 

2012). Life cycle and physiological requirements of many polar organisms are closely tied to 

the annual cycles of sea ice and available sunlight (see paragraph 1.2.2). Model projections 

reveal that greater light availability caused by a reduction in sea ice may increase open-water 

phytoplankton primary production (Arrigo et al. 2008; Steinacher et al. 2010).  

 

Figure 7 - Sea Ice Index and Sea Ice Concentration anomalies in May 2019. The Total 

anomaly in the right figure represents the lessening of the Sea Ice Concentration. The monthly 

Sea Ice Index provides a quick look at Antarctic-wide changes in sea ice. It is a source for 

consistently processed ice extent and concentration images and data values since 1979. 

Monthly images show sea ice extent with an outline of the 30-year (1981-2010) median extent 

for that month (magenta line).  

 

Polar marine ecosystems are intimately tied to sea-ice extent and seawater temperatures, which 

together influence food sources, organism growth and reproduction, and biogeochemical 

cycles. Some organisms may be able to acclimate to temperature changes, others might perish 

due to physiological intolerance to new environments. A southward retreat of winter sea ice 

(Figure 7) will diminish the areal extent of dense, shallow phytoplankton blooms and increase 

that of deep blooms with ramifying effects on biogeochemical cycles and grazer populations 

(Smetacek and Nicol 2005).  
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Apart temperature and salinity, nutrients plays an important role in primary production. SO is 

severely limited by iron (see paragraph 1.2.3), therefore productive regions tend to be restricted 

to the Antarctic continental margin and only extend offshore where water enriched with iron 

from land contact or from upwelling along shelves and continental slopes mixes with oceanic 

water impoverished in iron (Smetacek and Nicol 2005). Though, not only presence or absence 

of iron is critical for phytoplanktonic growth, but also the iron bioavailability. Trimborn et al. 

(2017) investigated the impact of ocean acidification on iron bioavailability in Antarctic 

phytoplankton species, demonstrating that different iron-species affect species composition. 

The altered response of phytoplankton has important implications for future biological CO2 

sequestration by the SO.  

Moreover, it is not only the autochthon Antarctic community where changes are occurring, but 

also in non-native species, which are colonizing the remote continent. Climate-driven biological 

invasion in Antarctica has been extensively reviewed (Hughes et al. 2015; McCarthy et al. 

2019). This phenomenon alters further the community structure, changing the species 

interactions and causing a decline in diversity. 

 

1.3. Net primary production 
 

The carbon cycle (see paragraph 1.1) is critically dependent on net primary production. Net 

primary productivity (NPP) is defined as the difference between photosynthesis, P (also GPP 

for gross primary production) and community respiration, R (equation 2).  

𝑁𝑃𝑃 =  𝐺𝑃𝑃 –  𝑅      (2) 

While GPP relies only on phototrophs organisms, which are able to fix organic carbon through 

photosynthesis, the R contribution could be autotrophic or heterotrophic. The exact contribution 

of phototroph organism in NPP represents a critical question. The so-called primary producers 

are fundamental for the functioning of the biological carbon pump (reviewed in 1.2.1), leading 

ultimately to fish production and sustained oxygen levels in the atmosphere (Quay et al. 2010). 

Among the many species here present, phytoplankton represents the bottom of the food chain 

in the Antarctic food web, as depicted in Figure 8. Therefore, phytoplankton contribution is 

crucial for the estimation of primary production. 
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Figure 8 - The Antarctic food web from Cool Antarctica website (Antarctic Ocean Food 

Web).  

 

1.3.1. Measuring primary production 
 

Over the last 50 years, 14C bottle incubations (Stemann Nielsen 1952) have been the benchmark 

for aquatic primary production estimation. This method employs the incorporation of the 

radiotracer 14C, to determine the carbon fixation in the field. The main advantage is represented 

by the sensitivity of this technique. In addition, extensive positive results for primary production 

are always obtained, allowing the collection of large data sets. Shortly after its introduction, the 

validity of this method was questioned (Peterson 1980). The main problem remains the 

ambiguity about the measurement of net or gross production. Despite the fact that 

methodological uncertainties were acknowledged, 14C incubations still dominate our 

understanding of primary production in the ocean (Quay et al. 2010).  

Meanwhile, other means to measure oceanic production have been developed, such as 

measurements of chlorophyll fluorescence variables or the isotopic composition of surface 

water (Marra 2009). The big drawback of chlorophyll‐based model is that they require 

knowledge of the ratio carbon to chlorophyll a (C/Chla), but this ratio is under stringent 

physiological and thus environmental control (Geider et al. 1997).  
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Fluorescence can be induced by both solar radiation and artificial illumination.  On the one 

hand, its measurement is a non-invasive method, permitting high temporal sampling rates, 

closely matched to sampling rates for physical variables (e.g., temperature, salinity, oxygen, 

etc.). On the other hand, fluorescence methods are not able to measure alternative electron 

transports and are dependent on variable nutrient conditions and irradiance levels (Kolber and 

Falkowski 1993), influencing the quantum yield of fluorescence and the absorption cross 

section especially in fieldwork. 

Moreover, advanced optics and remote sense techniques are now available to estimate ocean 

color. In this way, no sampling is required for the calculations of primary production. More 

specifically, the selective absorption of the photosynthetic pigment chlorophyll a can be used 

as a proxy for the quantification of phytoplanktonic biomass, based on satellites-derived 

measurements (Falkowski et al. 1998). However, these estimations still rely on 14C uptake for 

the validating algorithms to convert algal biomass into productivity estimates (Carr et al. 2006). 

Certainly, without meaningful comparisons of different methods, precise information about 

phytoplankton variability, both in physiological parameters and species composition, cannot be 

deduced.  

Despite the importance of the topic, measuring rates of marine primary production (PP) remain 

elusive since there is no absolute PP standard against which methodological accuracy can be 

tested (Quay et al. 2010). 

  

1.3.2. Respiration: an unknown factor 
 

As mentioned above, 14C assimilation would always give positive results, although in natural 

marine communities the net production can be either positive or negative, due to the effects of 

different factors. Firstly, both autotrophic and heterotrophic organisms are present in the 

oceans. Generally, the first are photosynthesizing, converting CO2 into biomass, while the 

second are respiring. This process is light dependent, so it takes place only during the daytime. 

During the night, no carbon assimilation, through photosynthesis, but a respiratory carbon 

release occurs. If primary production is measured only considering positive values, respiration 

is not necessarily taken in account (negative values are not measured). Indeed, one point of 

criticism of the 14C method consist in its doubtful capability to distinguish between net and 

gross productivity (see paragraph 1.3.1).  
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Secondly, respiration can be affected by stressful conditions and the equilibrium between 

photosynthesis and respiration varies not only with changing light regimes and nutrients 

availability (Geider and Osborne 1989), but also with temperature (Regaudie-de-Gioux and 

Duarte 2012).  

Even before 14C was used, the light-dark oxygen method constituted a standard approach for 

measuring photosynthesis in aquatic systems. The accumulation of oxygen in clear container 

(light bottle) represents NPP by the enclosed community, and the consumption of oxygen in a 

dark bottle is a measure of respiration. GPP is estimated by subtracting the dark bottle result 

from the light bottle result (Cullen 2001). Thus, respiration in the light and in the dark are 

assumed to be equal. Nonetheless, this assumption does not generally hold, so errors in 

estimation of the respiratory component of GPP occurred (Geider and Osborne 1992). 

Furthermore, some of the respiration attributed to phytoplankton may be bacterial, or the 

phytoplankton population may increase in the light bottle during the experimental time, but not 

in dark bottle. Additionally, one recurring concern using 14C method is the effect of the 

incubation container on metabolic processes, the so called ‘bottle effect.’ Bottle effects may be 

apparent over long incubation times and are thought to arise from contamination from the vessel 

walls, loss of turbulence, or damage to organisms (Marra 2009). In this way, the vessels are 

affecting the measurements, giving erroneous results. 

Methods based on direct oxygen measurements are less sensitive than techniques using the 

isotopic tracer 14C.  However, careful implementation of procedures using automated titration  

or pulsed oxygen electrodes can yield useful and reliable data, even from oligotrophic waters  

of the open ocean (Cullen 2001). 

There are relatively few data sets in the literature for phytoplankton respiration over a range of 

growth conditions, for example mostly limited to a modest range of intensity from about 50–

200 μmol quanta m−2 s−1, so the fidelity of respiration models may not be robust over the full 

range of light intensity that is relevant to phytoplankton communities. Progress has been made 

in the last decades, but respiration remains the biggest unknown factor in our understanding of 

the C budget of the ocean (Moisan and Mitchell 2018). 
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1.3.3. State of the art about Photosynthesis to Respiration ratio 

(rP/R)   
 

The photosynthesis to respiration ratio is defined as the ratio of the net oxygen produced by 

photosynthesis (P), to oxygen release in total ecosystem respiration (R). Since P and R are both 

sensitive to various types of stress (as described above, paragraph 1.3.2), this ratio varies not 

only according to the day : night rhythm, but also in response to variations in the abiotic and 

biotic conditions.  

In 1954, Ryther was the first to indicate the importance of the photosynthesis to respiration ratio 

in evaluating the significance of productivity measurements (Ryther 1955). In his paper, some 

important points about this ratio were underlined. Firstly, the loss of activity through respiration 

is extremely variable and, hence, a constant correction factor cannot be applied. Secondly, the 

respiration : photosynthesis ratio is dependent not only upon light, but equally as well upon any 

other factors which have a different effect upon the two processes, for example nutrient 

depletion. Additionally, he recognized that in measuring photosynthesis by 14C uptake, a 

considerable loss of photosynthetic activity may incur through respiration. The magnitude of 

this error, introduced by the respiratory loss of 14C, is proportional to the ratio of respiration to 

photosynthesis. In this paper, rP/R was investigated over days, reporting values between 1 and 

12 in a nutrient-deficient pure culture of marine Chlamydomonas. Ryther underlined that, 

during exponential growth of Chlamydomonas, respiration is 5-10% of photosynthesis, but in 

nutrient starved, non-growing, cultures respiration may equal photosynthesis. 

In the 70s, systematic work was done to measure photosynthesis, respiration and growth rates, 

searching for a relationship valid for all algal species. However, this approach was soon 

recognized as unsuccessful, since the rP/R differs between taxa and species. In 1975, Humphrey 

reported an example of the species-variability of this ratio, culturing eleven unicellular algae 

(Humphrey 1975). The lowest rP/R observed was equal to 3.5, the highest 18.1, for 

Amphidinium carterae and Monochrysis lutheri, respectively. Similar results were obtained by 

Burris, who measured ratios of photosynthesis to respiration ranging from 1.3 to 10.3 in eight 

different species of algae (Burris 1977).  
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The importance of the topic lead to studies also at the beginning of this century, when Vona 

and colleagues compared photosynthesis and respiration of three different species of algae, i.e. 

Koliella antarctica, Chorella saccarophila and Chorella sorokiniana (Vona et al. 2004). The 

first two are cryophilic algae, while the third is a mesophilic alga. Once more, a great variability 

in rP/R was measured, as showed in Table 1.  Specifically, P/R ratio ranged between 3 and 7 

in K. antarctica and C. saccarophila (precisely, 3.4 to 7.1 the former and 3.1 to 4.7 the latter), 

whereas C. sorokiniana reached, surprisingly, values above 50. This huge diversity in rP/R was 

not only species-specific, but also temperature dependent, confirming the impossibility of 

considering this value constant, as mentioned already 50 years before. 

 

 rP/R 

T (°C) Koliella antarctica Chorella saccarophila Chorella sorokiniana 

5 5.2 3.7 n.d. 

10 5.9 4.3 57.3 

15 7.1 3.6 53.5 

20 5.9 3.1 38.9 

25 6.6 3.5 32.1 

30 5.6 3.2 35.2 

35 3.4 4.7 21.3 

 

Table 1 - Temperature dependence of photosynthesis : respiration ratio (rP/R) in Koliella 

antarctica, Chorella saccarophila and Chorella sorokiniana  (n.d. = not determined). P/R 

ratios were calculated from gross photosynthesis and respiration data reported in Vona et al. 

(2004). 

 

The temperature dependency of P and R is surely an important parameter, together with other 

important factors that need to be taken in account, such as seasonality. Water temperatures 

change in different seasons, having a strong effect on metabolic rates. Furthermore, warm ocean 

waters are typically prevalent in oligotrophic regions of the oceans, whereas cold waters are 

generally more productive, supporting relative higher plankton biomass, as is evident from the 

examination of the correspondence between global maps of chlorophyll a and temperature in 

the ocean (Regaudie-de-Gioux and Duarte 2012). Hence, rP/R depend also on the site or region 

chosen for experiments. 
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Due to the remote position and the harsh environment, polar regions present more 

methodological limitations than temperate regions. During Austral winter, temperatures 

decrease dramatically in the Antarctic and ice formation prevents the feasibility of some 

experiments. Therefore, it is not surprising than only few studies focus specifically on PP and 

R in the Southern Ocean and predominantly during Austral summer (Arístegui et al. 1996).  

It might be argued that there is no primary production in winter anyway, but as long as in situ 

measurements prove the opposite, we cannot exclude it. 

In addition, it was observed that the comparison of estimates of marine phytoplankton primary 

production derived from different methods reveals very large variations (Regaudie-de-Gioux et 

al. 2014). Generally, comparisons among the methods are limited and only very few studies 

compared also in situ and in vitro methods (Corno et al. 2006; Robinson et al. 2009). 
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1.4. Aim of the Thesis 

 

Global climate change is believed to influence tremendously the dynamics ruling the 

environmental conditions, affecting important parameters, e.g. water temperature, salinity, pH 

value, and nutrient supply. The acclimation of the phytoplankton communities to these changes 

will lead to significant modifications in important metabolic processes, such as photosynthesis 

and respiration. Therefore, understanding how climate change influences the ratio of 

photosynthesis to respiration (rP/R) has become highly important for the estimation of the 

global carbon balance. Measurements of photosynthetic and respiration rates are spatially and 

temporally constrained, especially in harsh environments like Antarctica. While some studies 

investigated the photosynthetic activity of Antarctic phytoplankton (Palmisano et al. 1987; 

Petrou and Ralph 2011), knowledge about the carbon losses due to respiration is very scarce, 

principally due to methodological limitations (Marra 2009; Moisan and Mitchell 2018). Data 

presented in the literature show a high variability in the ratio between photosynthesis and 

respiration, proving the ratio is species–specific and temperature dependent (Vona et al. 2004). 

Additionally, other factors such as nutrient availability (e.g. iron) are expected to influence the 

rP/R and consequently, the primary productivity. 

Therefore, the aim of this thesis was firstly to retrieve experimental data on the variability of 

rP/R in ecological Antarctic phytoplankton species under different conditions; secondly, to 

estimate the quantitative effect of rP/R variations on integrated net primary production rate.  

The range of variability of rP/R in response to different growth conditions was investigated, 

testing this basic hypothesis: the P/R ratio varies as a function of temperature and nutrient 

availability in an ecotype-dependent manner.  

In this respect, two key species from the Southern Ocean were investigated: the diatom 

Chaetoceros sp. and the prymnesiophyte Phaeocystis antarctica. Both diatoms and P. 

antarctica are ubiquitous in the Southern Ocean, often forming large blooms around much of 

the Antarctic continent (Kropuenske et al. 2009). The former is a typical psychrophilic species, 

able to thrive in the sea ice with cold and high saline water but also in meltwater (Thomas et al. 

1992; Thomas and Dieckmann 2002). The latter has been observed in both deep and shallow 

mixed layers in the Southern Ocean (Arrigo et al. 2010). 
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Laboratory-based methods were employed to measure photosynthetic and respiration rates, 

fluorescence and cell parameters, from two ecologically relevant species of the Southern Ocean.  

More specifically, the effect of temperature, salt concentration and iron limitation were 

examined, analysing the following hypotheses: 

1. P/R ratios are temperature dependent in a way that the daily carbon assimilation rate is 

significantly influenced. 

Photosynthetic and respiration rates were derived from P-I curves measured by O2 gas 

exchange methods (Clark electrode/oxygen-sensitive optode). In addition, PAM-fluorescence 

and FRRf were used to measure electron transport rates and to estimate the possible 

contribution of alternative electron transport under different growth conditions. In this way, 

information about the physiological status of the cells in dependence on three different 

temperatures (i.e. -1, +1, +4 °C) were collected. 

 

2. Temperature dependency of rP/R persists under different salinity conditions. 

This was tested by using 4 different salinity concentrations from 20, 35, 50 and 70 PSU in 

Chaetoceros sp. and two P. antarctica strains.  

Salinity tolerance in different isolates of P. antarctica was previously tested, verifying that no 

genetically, but geographical-based response occurred (Gäbler-Schwarz 2009; Gäbler-Schwarz 

et al. 2015).   

 

3. rP/R remains constant under iron-limiting conditions 

For the first time, a combination of chlorophyll a fluorescence, O2 evolution and particulate 

organic carbon production measurements were used to understand the effect of low iron 

availability on the usage of photosynthetic electrons in cell metabolism and finally in carbon 

production in Chaetoceros sp. 

Key physiological parameters under three different temperatures in combination with four 

different salinities were coupled with estimation of the quantitative effect of rP/R variations on 

integrated net primary production rates.  
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2. Material and Methods 
 

The experimental work of this thesis was mainly conducted in the Plant physiology laboratory 

of the University of Leipzig, under the supervision of Prof. Dr. Christian Wilhelm and Dr. 

Torsten Jakob. Here, the effect of temperature and salinity on the rP/R variability were 

investigated, whereas the influence of iron limitation on this ratio was examined at the Alfred 

Wegener Institute (AWI, Bremerhaven) in the ‘EcoTrace’ group, under the supervision of Prof. 

Dr. Scarlett Trimborn. 

 

2.1. Temperature and salinity  
 

2.1.1. Culture condition 
 

Cultures of the Antarctic diatom Chaetoceros sp. and two strains of the Haptophyte Phaeocystis 

antarctica were obtained from Dr. Steffi Gäbler-Schwarz (AWI Bremerhaven, Germany). The 

Phaeocystis strains were sampled and isolated on RV Polarstern cruises and at an Antarctic 

research station between 2005 and 2007 (Gäbler-Schwarz et al. 2015), whereby strains 109_27 

and 764_48 were isolated from the Lazarev Sea (ANT XXIII-2) and from Prydz Bay (ANT 

XXIII-9), respectively. All cultures were grown in GP5 Medium (Loeblich and Smith 1968), 

modified in this study with respect to the use of marine salt instead of seawater. The cultures 

were maintained in polystyrene culture flasks with filter screw caps (Carl Roth) in a climate 

chamber (Economic Lux Chamber, Snijders Labs) under low-light conditions (10 μmol photons 

m-2 s-1; 16:8 hours light-dark cycle). The cultures were used for experiments in their exponential 

growth period between 6 and 10 days post inoculation. The number of replicates (n) given in 

the results section is equivalent to the number of biological replicates (a detailed listing of the 

number of replicates is presented in Table 2). Since the measurements of oxygen evolution 

rates were characterized by a relatively low signal-to-noise ratio, the number of biological 

replicates for this type of measurements was expanded up to n = 11 to increase the statistical 

relevance. The number of replicates (n) given in the results section is equivalent to the number 

of biological replicates.  
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Table 2 - Temperature and salinity dependence of gross Photosynthesis (Pmax), Respiration (R), 

Photosynthesis to Respiration ratio (rP/R), Non Photoyhemical Quenching (NPQmax), 

fluorescence-based to oxygen-based Photosynthetic rates (Pf/Po) and Chla-specific in vivo-

absorption coefficient (a*phy) in Chaetoceros sp., Phaeocystis antarctica strain 109 and 764,  

(nd = not determined). 

 

 

Three different temperature treatments were applied, namely -1, +1, and +4 °C (± 0.5 °C), in 

combination with different salinities of the growth medium: 20, 35, 50, and 70 practical salinity 

units (PSU; Table 2). More precisely, growth temperature of -1 °C was combined with salinities 

of 35, 50, and 70 PSU whereas growth temperatures of 1 and 4 °C were combined with salinities 

of 20, 35, and 50 PSU, respectively. The combinations of 20 PSU at -1 °C and 70 PSU at 1 or 

4 °C were omitted since they are practically impossible to realize. A salinity well below 35 PSU 

can be found only in regions with melting sea ice (T > 0 °C), whereas salinities as high as 70 

PSU can be reached only in the brine channels of sea ice (T < 0 °C). The salinity of the medium 

was adjusted by the addition of the respective amount of marine salt. Depending on the growth 

rates of the cultures under the different experimental conditions, the cultures were acclimated 

for a period of at least two weeks (usually four weeks) to the new condition before starting 

physiological measurements. 
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2.1.2. Chlorophyll a determination  
 

Chlorophyll a (Chla) concentrations were determined spectrophotometrically by extraction 

with 90% acetone according to the protocol from Jeffrey and Humphrey (1975). Algal samples 

(5 mL) were collected on glass-fiber filters, 2.5 mL acetone was added, and cells were broken 

in a cell homogenizer (Precellys Evolution, Bertin Technology, France). After centrifugation 

(2 min, 12.500 x g, Sigma 1-14, Sigma, Germany), absorbance of the pigment extract was 

measured with a spectrophotometer (Hitachi U2000, Tokyo, Japan) at 664 and 630 nm. 

 

2.1.3. Measurements of photosynthesis rates and variable 

chlorophyll fluorescence  
 

Oxygen-based (PO) and fluorescence-based (PF) photosynthesis rates were measured and 

calculated as described in detail in Wagner et al. (2006). Essentially, oxygen evolution and 

variable Chlorophyll (Chl) fluorescence were measured by light-irradiance curves (P-E curves) 

in a so-called Light pipette equipped with a special cuvette (Topgallant LLC, Salt Lake City, 

UT, USA). A 3-ml aliquot of cells (equals a Chla concentration of 4 – 6 µg mL-1) from each 

experimental condition was transferred into the cuvette and maintained at the respective growth 

temperature under continuous stirring in darkness for 5 min. For P-E curves, six actinic light 

levels (21, 50, 107, 207, 415, 713 μmol photons m−2 s−1) were applied for 4 min each. These 

light periods alternated with dark periods of 4 min length each. Measurements of P-E curves 

always started with an initial 4-min dark period. Oxygen evolution was measured using a Clark-

type electrode (MI 730, Microelectrodes Inc., NH, USA). For the calculation of PO (µmol O2 

[mg Chla]-1 h-1) the oxygen solubility in dependence of the medium salinity and the measuring 

temperature (Benson and Krause 1984) was taken into account. Net oxygen evolution and dark 

respiration rates were derived from the average oxygen evolution rates measured during the last 

minute of each light and dark period, respectively. Gross oxygen production was derived by 

correcting net oxygen evolution rates for the corresponding dark respiration (R; µmol O2 [mg 

Chla]-1 h-1) measured after the respective light periods. It should be noted that no enhanced 

post-illumination respiration (Beardall et al. 1994) was observed in the measurements. 
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Moreover, the respiration rates showed very little variability with respect to the preceding 

irradiance levels.  

The ratio photosynthesis/respiration (rP/R) was derived from the maximum value of 

photosynthesis (Pmax) divided by the mean value of all respiration rates measured within a 

specific P-E curve.  

In parallel with oxygen evolution, the variable Chl fluorescence parameters were determined, 

whereby Fo and Fm are the minimum and maximum fluorescence in darkness, respectively, and 

F and Fm’ are the steady-state minimum and maximum fluorescence under actinic illumination, 

respectively. Fluorescence-based photosynthesis rates (µmol O2 [mg Chla]-1 h-1) were estimated 

as: 

 

 𝑃𝐹 = 𝑃𝑆𝐼𝐼 × 𝑄𝑝ℎ𝑎𝑟 × 0.5 × 0.25/(𝑑 × 𝐶ℎ𝑙)   (3) 

 

where PSII is the effective quantum yield of PSII (Genty et al. 1989), Qphar is the amount of 

absorbed radiation (Wagner et al. 2006), d is the optical path length of the measuring cuvette, 

and Chl is the Chla concentration of the algal suspension. The factors 0.5 and 0.25 are based on 

the assumption that the linear transport of one electron requires two quanta and that four 

electrons are required for the evolution of one molecule of oxygen, respectively. It is thus 

assumed that PF represents the maximum amount of electrons (expressed as oxygen 

equivalents) transported through the electron transport chain, whereas PO is the oxygen 

evolution rate of PSII biased by alternative electron pathways, such as the Mehler-reaction or 

cyclic electron transport (Schreiber and Neubauer 1990). Therefore, the ratio PF/PO describes 

the activity of alternative electron-consuming reactions (STREB et al. 2005; Bailey et al. 2008).  

The oxygen-based and fluorescence-based P-E curves were fitted according to Eilers and 

Peeters (Eilers and Peeters 1988). The derived fitting parameters (a, b, and c) were used to 

calculate Pmax and the light saturation index (Ek value) according to Eilers and Peeters (1988): 

 

 𝑃max = 1/(𝑏 + 2√𝑎 × 𝑐)     (4) 

 

 𝐸k = 𝑐/(𝑏 + 2√𝑎 × 𝑐)     (5) 
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In addition to the estimation of PF, the variable fluorescence parameters were used to calculate 

the extent of non-photochemical quenching (NPQ) according to Schreiber et al. (1995): 

 

 NPQ = (𝐹m − 𝐹m′)/𝐹m′     (6) 

 

where Fm is the maximum fluorescence measured at the end of the initial dark period of P-E 

curve measurements. The maximum NPQ values (NPQmax) and the half-saturation irradiance 

of NPQmax (E50) were derived from fitting of the light-response curves of NPQ using the Hill 

equation (Serôdio and Lavaud 2011). A representative example of the fitted light-dependent 

NPQ measured in C. sp. and in P. antarctica is shown in Figure 9. 
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Figure 9 - Representative example of measurements of photosynthesis rates and non-

photochemical quenching (NPQ). In a) oxygen-based net photosynthesis rates (PO; µmol O2 

[mg Chla]-1 h-1) as function of irradiance in Chaetoceros sp. (filled triangles) and Phaeocystis 

antarctica (strain 109; filled circles) grown at 4 °C and 35 PSU are depicted. Dotted lines 

show the fitted photosynthesis-irradiance curves of Chaetoceros sp. and P. antarctica, 

respectively. In b) the fluorescence-based gross photosynthesis rates (PF; µmol O2 [mg Chla]-1 

h-1) as function of irradiance in Chaetoceros sp. and P. antarctica are depicted. c) Light-

dependent increase of non-photochemical quenching (NPQ; [Fm-Fm’]/Fm’) in Chaetoceros 

sp. and P. antarctica. 

 



Material and Methods 

 

[40] 

 

 

2.1.4. Cellular optical properties  
 

The in vivo-absorption spectra of algal cells were measured in a dual-beam spectrophotometer 

(M500, Zeiss, Jena, Germany). The photometer was equipped with an adapter for dispersive 

samples (Zeiss) to allow a very close placement of the sample to the detector and to correct for 

light scattering. The Chla-specific in vivo-absorption coefficient, a*phy (cm2 [mg Chla]-1) was 

calculated as: 

 

 𝑎𝑝ℎ𝑦
∗ () = 2.3 × 𝐴()/𝑑 × Chl    (7) 

 

where 2.3 is the conversion factor from log10 to ln, A is the absorption of the sample (400 – 

700 nm), d is the path length of the cuvette (0.01 m), and Chl is the Chla concentration of the 

sample (mg m-3). In the results section, the mean values of the Chl-specific absorption (�̅�𝑝ℎ𝑦
∗ ) 

are given.  

The knowledge of the emission spectra of the light source and of a*phy allows the estimation of 

the amount of photosynthetically active radiation absorbed by the algal cultures, Qphar. The 

estimation is based on the following equation according to Gilbert et al. (2000): 

 

 𝑄phar = ∫ 𝑄()
700 𝑛𝑚

400 𝑛𝑚
− 𝑄() × 𝑒−(𝑎phy

∗ ()×Chl×𝑑)
   (8) 

 

where Qphar is the photosynthetically absorbed radiation (µmol m-2 s-1), Q is the 

photosynthetically available (incident) radiation (µmol m-2 s-1), and d is the optical path length 

(m). 

 

2.1.5. Estimation of net primary production  
 

To describe the potential effect of different assumptions for rP/R on NPP estimations (e.g. for 

field samples) the expected daily NPP (NPPF, NPPO) was modeled from measured 

fluorescence- and oxygen-based P-E curves (PF and PO, respectively; see above) and 

considering either measured respiration rates or the assumption of different respiratory loss 

rates (10, 20, and 30% of GP).  
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For the respective experimental conditions, the mean values of light-dependent GP (derived 

from measured P-E curves, see above) were fitted according to Eilers and Peeters (1988). An 

example of a fitted P-E curve is presented in Figure 9. The derived fitting parameters (a, b, c) 

were used to estimate daily NPPF and NPPO (µmol O2 [mg Chla]-1 d-1) as: 

 

 𝑁𝑃𝑃 = ∫ (𝐸/[(𝑎 × 𝐸²) + (𝑏 × 𝐸) + 𝑐]) − 𝑅
24h

0h
   (9) 

 

where E is the amount of incident irradiance (μmol photons m−2 s−1; see below) and R is the 

respiration rate. The respiration rates were derived from the mean value of all respiration rates 

measured within a specific P-E curve. The incident irradiance was based on four daily light 

climates (Figure 10) representing model estimates of different seasonal in situ-light conditions 

(Petrou and Ralph 2011): winter sea ice, spring melt water, summer pelagic water, and autumn 

new sea ice. These light climates were combined with the fitting parameters derived from 

specific temperature and salinity conditions that reasonably represent the seasonal conditions 

during spring, summer, autumn, and winter (Table 3). To take into account the dynamics of 

light conditions, NPP was estimated for 10-min time intervals and integrated over 24 h. 

 

Season Temperature Salinity Light condition 

Spring 1 °C 20 – 35 PSU Meltwater 

Summer  1 – 4 °C 35 PSU Pelagic 

Autumn -1 – 1 °C 35 PSU New sea ice 

Winter -1 °C 35 – 50 PSU Sea ice 

 

Table 3  - Experimental conditions and assumed light conditions used for the estimation of 

daily net primary production (NPP) under different seasonal conditions from measured 

photosynthesis and respiration rates. In case of a given range of temperature or salinity values, 

NPP was calculated as mean value of the respective NPP at the specific conditions. Light 

conditions were adopted from Petrou and Ralph (2011). 
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Figure 10 - Light conditions used for the estimation of daily net primary production from 

measured photosynthesis and respiration rates. Light conditions were adopted from Petrou 

and Ralph (2011) and represent in situ irradiance (PAR, photosynthetically available 

radiation) for phytoplankton in summer (Pelagic), autumn (New sea ice), winter (Sea ice), and 

spring (Meltwater). 
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2.2. Iron limitation 
 

2.2.1. Experimental conditions 
 

The Antarctic diatom Chaetoceros sp. (obtained from Dr. Steffi Gäbler-Schwarz, AWI 

Bremerhaven, Germany) was kept for more than six months in stock cultures with Fe-deplete 

and –replete natural Antarctic seawater medium. For the preacclimation phase (over 2 weeks) 

and the main experiment, the diatom was grown at 2 °C in semi-continuous dilute cultures at 

100 μmol photons m-2 s-1 with a 16:8 h light : dark cycle, using light-emitting diodes (LED) 

lamps (SolarStinger LED SunStrip Marine Daylight, Econlux). Light intensities were adjusted 

using a LI-1400 datalogger (Li-Cor, Lincoln, NE, United States) with a 4p-sensor (Walz, 

Effeltrich, Germany). The f/2R medium (Guillard and Ryther 1962) was prepared from sterile- 

and acid-cleaned-filtered (0.2 µm) natural low-iron Antarctic seawater, supplemented with 

chelexed (ChelexR 100, Sigma-Aldrich, Merck) macronutrients (100 µmol L-1 Si, 100 µmol L-

1 NO3, 6.25 µmol L-1 PO4) and vitamins (30 nmol L-1 B1, 23 nmol L-1 B7, and 0.228 nmol L-1 

B12). To this seawater water, either a trace metal mix containing no iron (Control treatment) or 

to which an addition of 4 nM FeCl3 (+Fe treatment) was made, was given. The trace metal 

mixture contained zinc (0.16 nmol L-1), copper (0.08 nmol L-1), cobalt (0.09 nmol L-1 Co), 

molybdenum (0.05 nmol L-1), and manganese (1.9 nmol L-1). These trace metal additions were 

adjusted to maintain the ratio of the original F/2 recipe and represent trace metal concentrations 

typical for Antarctic HNLC waters. The main experiment lasted 8 days for the Control treatment 

and 7 days for the +Fe treatment. 4L polycarbonate incubation bottles were used and triplicates 

of each treatment were run in parallel. Final sampling of all treatments took place when the 

cells were in exponential growth phase, ensuring stable carbonate chemistry (Table 4).  

 

 Control +Fe 

Alkalinity (μmol kg−1) 2248 ± 5 2242 ± 6  

DIC (μmol kg−1) 2180 ± 8 2192 ± 5 

 

Table 4 - Concentrations of total alkalinity (TA) and dissolved inorganic carbon (DIC) 

determined at the end of the experiment for Chaetoceros sp. grown under iron replete (+Fe) 

and deplete (Control) conditions. All values are mean ± standard deviation (n=3). 
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In order to minimize iron contamination, all sampling and handling of the incubation bottles 

were conducted under a laminar flow hood (Class 140 100, Opta, Bensheim, Germany) using 

trace metal clean techniques. Briefly, culture work was conducted in 4 L polycarbonate (PC) 

bottles (Nalgene, Thermo Fisher Scientific, Waltham, MA USA), which had all been soaked 

for 1 week in 1% Citranox solution (Sigma-Aldrich, St. Louis, MO, USA)  and successively 

for 1 week in 1 M hydrochloric acid (high-performance liquid chromatography [HPLC] grade, 

Merck Millipore Corporation). Between each soaking step, the bottles were rinsed seven times 

with ultrapure water (Merck Millipore Corporation). Finally, the trace metal-cleaned 

equipment/bottles were air dried under a clean bench (U.S. class 100) and stored in three 

polyethylene (PE) bags until usage.  

 

2.2.2. Fluorescence measurements 
 

Chlorophyll a (Chla) fluorescence was measured with a fast repetition rate fluorometer (FRRf, 

FastOcean PTX sensor, Chelsea Technologies Group Ltd, West Molesey, UK) connected with 

a FastAct Laboratory system (Chelsea Technologies Group Ltd). All measurements were 

performed at 2 °C after a 10 min dark acclimation period. The excitation wavelength of the 

fluorometer’s LED was 450 nm, with an automated adjustment of the light intensity to 1.2 × 

1022 μmol photons m−2 s−1. A single turnover mode was set with a saturation phase consisting 

of 100 flashlets on a 2 μs pitch followed by a relaxing phase of 40 flashlets on a 50 μs pitch. 

According to Kolber et al. (1998), photosynthetic efficiency was determined by measuring the 

minimum (Fo) and maximum fluorescence (Fm) to calculate the maximum quantum yield of 

photochemistry in PSII (Fv/Fm) using the following equation: 

 

𝐹𝑣 𝐹𝑚⁄ = (𝐹𝑚 − 𝐹𝑜) 𝐹𝑚⁄      (10) 

 

For the measurement of photosynthesis versus irradiance curves (P-E curves), five actinic light 

levels (21, 50, 107, 207, 415 μmol photons m−2 s−1) alternating with dark periods were applied 

for 5 min each. The effective (see below) and the maximum quantum yield were measured 6 

times at the end of each light and dark period, respectively. The FRRf device supplied actinic 

irradiance and the irradiance level was previously checked with a light sensor (ULM-500 

Universal Light Meter equipped with a Spherical Micro Quantum Sensor US-SQS, Walz 
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GmbH, Effeltrich, Germany). Absolute electron transport rates (aETR, e− PSII−1 s−1) at each 

light level were calculated according to the equation (2) following Suggett et al. (2004; 2009): 

 

𝑎𝐸𝑇𝑅 =  𝜎𝑃𝑆𝐼𝐼 𝑥 ((𝐹𝑣′ 𝐹𝑚′⁄ ) (𝐹𝑣 𝐹𝑚⁄ )⁄ ) 𝑥 𝐸    (11) 

 

where σPSII is the functional absorption cross section of PSII photochemistry (nm2 PSII-1). 

Fv’/Fm’ denotes the effective PSII quantum yield under ambient light and E represents the 

respective irradiance level (photons m−2 s−1). The maximum absolute electron transport rates 

(aETRmax) was measured at 492 μmol photons m-2 s-1. 

Using the Stern–Volmer equation, non-photochemical quenching (NPQ) of chlorophyll a 

fluorescence was calculated as 

 

𝑁𝑃𝑄 = 𝐹𝑚 𝐹𝑚′ − 1⁄      (12) 

 

The photosynthesis-irradiance (P-E) curves based on fluorescence measurements were fitted 

according to Eilers and Peeters (1988). From the derived fitting parameters (a, b, and c) the 

light-saturating index (Ek) was calculated: 

 

 𝐸𝑘 =
𝑐

𝑏+2√𝑎×𝑐
      (13) 

 

In addition to the parameters named above, the analysis software of the FRR fluorometer 

FastPro8 (Chelsea Technologies Group Ltd, West Molesey, UK) provides a measure of the 

number of functional PSII reaction centers per volume (RCIIvol, nmol m-3). Together with the 

cell number and the cellular Chla content (Chlacell, pg cell-1) of the actual sample, it allows the 

conversion of aETR (e− PSII−1 s−1) into an equivalent oxygen production rate (fluorescence-

based photosynthesis rate PF, µmol O2 [mg Chla] -1 h-1): 

  

 𝑃𝑓 =  (𝑎𝐸𝑇𝑅 × 𝑅𝐶𝐼𝐼𝑐𝑒𝑙𝑙 × 3600) (4 × 𝐶ℎ𝑙𝑎𝑐𝑒𝑙𝑙)⁄    (14) 

 

where RCIIcell is the number of PSII reaction centers per cell (amol cell-1), 3600 is the 

conversion factor from s to h and the factor 4 considers that water splitting releases four 

electrons per O2.  
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After the completion of the fluorescence light curve (FLC) curve, an additional dark-adaptation 

period of 10 min was applied, followed by a single turnover flashlet to check for recovery of 

PSII. Using the Fv/Fm measured before and after the FLC-curve, the yield recovery was 

calculated and given as % of the initial Fv/Fm (before the FLC-curve). All measurements (n = 

3) were conducted at the growth temperature of 2 °C. 

 

2.2.3. Oxygen-based photosynthesis and respiration rates 
 

Photosynthesis and respiration rates were measured using an oxygen microsensor system 

(PreSens, Regensburg, Germany). The fundamental principle of optode technology is based on 

the ability of selected substances to act as dynamic luminescence quenchers. A representation 

of an optode-based oxygen sensor is reported in Figure 11. Specifically, the PreSens sensor is 

constituted by an oxygen-sensitive luminophore, based on a platinum porphyrine complex 

(Tengberg et al. 2006; Bittig et al. 2018). 

 

 

Figure 11 - Optical design and outside view of an optode-based oxygen sensor (Tengberg et 

al. 2006).  
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From each experimental condition, cells were harvested by gentle filtration of 400 – 500 ml 

culture volume over a 2 μm membrane filter (Isopore, Millipore) to obtain a volume of about 4 

– 6 ml (equal to a Chla concentration of 2 – 3 μg mL-1). Subsequently, the concentrated cell 

suspension was transferred into a special custom-made cuvette where an implantable oxygen 

microsensor was placed (PreSens) and maintained at 2 °C under continuous gentle stirring. For 

the measurement of the oxygen-based P-E curves, Chaetoceros sp. cells were dark-adapted for 

10 min and then exposed each for 5 min to five increasing light intensities (45, 90,185, 302, 

455 μmol photons m−2 s−1), alternating with subsequent dark phase of the same duration. The 

light intensities were provided by a light projector equipped with neutral density filters. Each 

irradiance level was checked with a light sensor as described above (paragraph 2.2). After the 

measurements, samples for determination of Chla concentration of the cell’s concentrate were 

taken, filtered onto GF/F filters and stored at -80 °C. Chla was subsequently extracted in 1,6 

mL acetone (overnight in darkness, 4 °C) and determined with a Turner Designs fluorometer 

(Model 10-000 R, Mt. View, Canada). 

For the calculation of photosynthetic rates the oxygen solubility in dependence of the medium 

salinity and the measuring temperature (Benson and Krause 1984) was used. Gross oxygen 

production, GP, and net oxygen production, NP are here reported in μmol O2 (mg Chla h)-1. GP 

was derived by correcting net oxygen evolution rates for the corresponding dark respiration rate 

(R; μmol O2 (mg Chla h)-1). GPmax and NPmax in the following sections referred to GP and NP 

values obtained at the maximal light intensity investigated (i.e. 455 μmol photons m−2 s−1).  The 

P-E curves based on gross oxygen production were fitted according to Eilers and Peeters (1988). 

 

2.2.4. Growth and cell size determination 
 

Cell samples were fixed with Lugol’s solution and stored at 2 °C in the dark until counting. Cell 

numbers were determined using Utermöhl chambers (Hydrobios, Altenholz, Germany) on an 

inverted microscope (Zeiss Axiovert 200). After a settling time of at least 24 hours, Chaetoceros 

sp. cells were counted in stripes in an Utermöhl chamber until at least 400 cells had been 

counted. A magnification of 400x in combination with a 1.6x optovar was used for counting. 

The cell numbers were plotted on a logarithmic scale and the slope of the linear regression was 

used to determine growth rates (Fanesi et al. 2016). Cellular biovolume was calculated 

according to Hillebrand et al. (1999), measuring at least 50 cells for treatment. 
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2.2.5. Particulate organic carbon and nitrogen 
 

For the quantification of particulate organic carbon and particulate organic nitrogen (POC and 

PON, respectively), at the end of the experiment 750 mL of each Chaetoceros  sp. culture flask 

were filtered onto pre-combusted (500 °C, 15 h) 25-mm GF/F filters (Whatman). One filter 

blank was taken for each bottle. Samples were stored in combusted glass petri dishes at -20 °C 

until sample preparation. Prior the analysis, filters were dried at 60 °C overnight before they 

were acidified with 200 μL of 0.2 M HCl to remove the inorganic carbon. After being dried 

again at 60 °C overnight, filters were coated in tin foil and compressed into small pellets. 

Samples were analysed with an automated carbon nitrogen elemental analyser (Euro EA - CN 

Elemental Analyzer, HEKAtech GmbH, Wegberg, Germany). POC and PON contents per cell 

were corrected for blank measurements and normalized to cell density and the filtered volume 

to yield cellular quotas. Daily POC production rates were calculated by multiplication of the 

cellular quota with the specific growth rate of the respective treatment. The molar ratio of 

cellular carbon to nitrogen (C : N) was calculated by dividing the content of POC per cell (mol) 

by the content of PON per cell in (mol). 

 

2.2.6. Pigments 
 

For the analysis of pigments, 750 mL of the Chaetoceros sp. cultures were filtered onto 25 mm 

glass fiber filters (GF/F, Whatman). The filters were frozen immediately in liquid nitrogen (N2) 

and stored at -80 °C. Before analysis, pigments were extracted from the GF/F filter for 24 h at 

4 °C in the dark using 90% acetone (v/v). After centrifugation (5 min, 4 °C, 13.000 g) and 

filtration through a 0.45 μm pore size nylon syringe filter (Nalgene®, Nalge Nunc 241 

International, Rochester, NY, USA), total pigment concentrations were determined via reverse 

HPLC (LaChromElite system, VWR, Darmstadt, Germany). A Spherisorb ODS-2 column (5 

μm particle size; Waters, Milford, MA, USA) was used for the separation of the pigments, 

applying a gradient following Wright et al. (1991). Peaks were detected at 440 nm and identified 

as well as quantified by co-chromatography with standards (DHI Lab Products, Hørsholm, 

Denmark) using the software EZChrom Elite ver. 3.1.3. (Agilent Technologies, Santa Clara, 

CA, USA).  
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More specifically, concentrations of the light harvesting pigments (LHP): chlorophyll a (Chla) 

and c2 (Chl c2), fucoxanthin (Fuco), and the light protective pigments (LPP): diatoxanthin (Dt), 

diadinoxanthin (Dd) and ß-carotene were determined and normalized to filtered volume and 

cell numbers to yield cellular quotas. 

 

2.3. Statistical analysis 
 

2.3.1. Temperature and salinity 
 

The physiological data were tested statistically for significance using two-way analysis of 

variance (ANOVA) followed by Bonferroni post-tests (p-value < 0.05). The different salinity 

and temperature conditions were used as treatment factors. The data set was checked for 

normality by Shapiro-Wilk test (SigmaPlot 12.5), and all random samples passed the test. 

In addition, to test for significance between two particular data sets (e.g. all values of rP/R in 

Chaetoceros sp. versus P. antarctica) standard t-test was used.  

 

2.3.2. Iron limitation 
 

The effect of iron availability (Control vs. +Fe) on all experimental parameters was statistically 

analyzed using one-way analyses of variance (ANOVA) with Bonferroni’s multiple 

comparison post-tests. All statistical analyses were performed using the program GraphPad 

Prism (Version 5.00 for Windows, Graph Pad Software, San Diego California, USA) and the 

significance testing was done at the p < 0.05 level. 
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3. Results 
 

3.1. Temperature and salinity 
 

3.1.1. Physiological key parameters 
 

For the physiological characterisation of phytoplankton cells, the photosynthetic capacity and 

the potential of light-protective mechanisms were measured. Figure 9 depicts an example of 

the Photosynthesis-irradiance (P-E) curves (shown as net oxygen evolution rate) based on the 

measurement of oxygen evolution (Figure 9a) and based on PAM-fluorescence (Figure 9b) in 

comparison of Chaetoceros sp. and Phaeocystis antarctica. The oxygen evolution rates were 

light saturated at a relatively low irradiance with a light saturation index (Ek value) of 50 µmol 

photons m-2 s-1 (Figure 9a). Moreover, the maximum values of net photosynthesis were higher 

in Chaetoceros sp. than in P. antarctica. This difference is partly due to the different respiratory 

activities of the phytoplankton species. In contrast to oxygen evolution, the fluorescence-based 

photosynthesis rates were saturated at a higher irradiance (Ek = 115 µmol photons m-2 s-1) in 

both species. Another prominent difference in the comparison of Chaetoceros sp. and P. 

antarctica was observed in NPQ values (Figure 9c). Here, much higher maximum NPQ values 

were observed in Chaetoceros sp. than in P. antarctica.  

For further analysis, the data from P-E curves were used to compare the maximum gross 

photosynthetic rates (Pmax), respiration rates (R), ratio rP/R, NPQmax, and ratio of maximum 

fluorescence-based/maximum oxygen-based photosynthesis rates (PF/PO) for all experimental 

conditions and for the three algal strains used in this study (see below). It has to be mentioned 

that at a growth temperature of -1 °C the two strains of P. antarctica did not grow sufficiently 

well at 70 PSU to obtain sufficient biomass for physiological measurements. Therefore, under 

this temperature/salinity combination physiological measurements were performed for 

Chaetoceros sp. only. In addition to the determination of physiological parameters, data of P-E 

curves were also used to apply a curve fit according to Eilers and Peeters (1988) and to finally 

estimate the effects of changes in rP/R on NPP for different environmental scenarios (see 

below).  

 

 



Results 

 

[51] 

 

 

 
 

 

 

Figure 12 - Physiological key parameters (Pmax, R, rP/R, NPQmax) of Chaetoceros sp. and 

Phaeocystis antarctica. Mean values (± standard deviation) of physiological parameters 

measured in Chaetoceros sp. and Phaeocystis antarctica (strains 109 and 764) grown under 

different temperatures (-1, 1, 4 °C) and salinity of growth medium (20, 35, 50, 70 PSU; white, 

light grey, dark grey, black bars, respectively): a) Maximum gross oxygen-based 

photosynthesis (Pmax, [µmol O2 (mg Chla)-1 h-1], n = 4 – 11), b) Respiration rate (R, [µmol O2 

(mg Chla)-1 h-1], n = 4 – 11), c) Ratio gross photosynthesis/respiration (rP/R, n = 4 – 11), d) 

Maximum value of non-photochemical quenching (NPQmax, n = 4 – 11), ‘n’ depicts the 

number of biological replicates. For P. antarctica no data were obtained at the condition -1 

°C/70 PSU (marked with ‘n.d.’). 
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Figure 12a shows the mean values of Pmax (Gross oxygen-based photosynthesis) at three 

different growth temperatures and in combination with different salinities. For Chaetoceros sp. 

no significant effect of temperature on Pmax was observed, which is in contrast to P. antarctica. 

P. antarctica strain 109 showed significantly higher Pmax at -1 °C than at 1 and 4 °C, all in 

combination with 50 PSU (p < 0.001). This temperature effect on Pmax was also observed for 

the comparison of -1 and 1 °C at 35 PSU (p < 0.05), whereas no such temperature effect was 

detected for the comparison of Pmax values measured at 1 and 4 °C. A different influence of 

temperature on Pmax was observed in P. antarctica strain 764. Here, significantly higher Pmax 

values were measured at 4 °C than at 1 °C, at 20 and 35 PSU (p < 0.001), although Pmax was 

higher at -1 °C than at 1 °C only at 35 PSU (p < 0.001).  

For all tested species an influence of salinity on Pmax was observed at 4 °C, with significantly 

lower Pmax values at 50 PSU than at 20 PSU (p < 0.01) and 35 PSU (p < 0.05). This salinity 

effect on Pmax was additionally observed at -1 °C, in P. antarctica strain 764 comparing 50 to 

35 PSU (p < 0.001), and in Chaetoceros sp. comparing 70 and 35 PSU (p < 0.001).  

It should be highlighted that Pmax values of Chaetoceros sp. at 1 °C were significantly higher 

than in both strains of P. antarctica (p < 0.01). At 4 °C, Pmax in Chaetoceros sp. was 

significantly higher than in P. antarctica strain 109 (p < 0.01). Significant differences in Pmax 

in comparison of strain 109 and 764 of P. antarctica were observed only at 4 °C (p < 0.05).  

In Figure 12b depicts the respiration rates under the applied experimental conditions. In 

Chaetoceros sp., there was a trend of increasing respiration rates with temperature at a salinity 

of 35 PSU, with significant differences between -1 and 4 °C (p < 0.001). In P. antarctica strain 

109 a comparable effect was observed at 35 and 50 PSU with a significant increase of 

respiration rates at 4 °C compared to 1 °C (p < 0.01) and at 4 °C compared to -1 °C (p < 0.01). 

In P. antarctica strain 764 a significant increase of respiration rates with temperature was 

observed only at a salinity of 35 PSU in the comparison of 4 to 1 °C (p < 0.001). In the 

comparison of the different species the most prominent result is the significantly higher 

respiration rate at 4 °C / 35 and 50 PSU in P. antarctica strain 109 compared to strain 764 (p < 

0.01) and to Chaetoceros sp. (p < 0.001).  

Figure 12c represents the ratio of gross Pmax over respiration (rP/R). For all investigated species 

a decreasing ratio P/R at 35 PSU was observed in the comparison of 1 to 4 °C (p < 0.05). This 

trend of decreasing rP/R with increasing temperature was measured in Chaetoceros sp. and P. 

antarctica strain 109 also in the comparison of -1 to 4 °C (at 35 PSU; p < 0.01).  
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Salinity was of minor importance on changes in rP/R. In both strains of P. antarctica, only at a 

growth temperature of 1 °C a significantly higher rP/R was observed at 35 PSU compared to 

both 20 and 50 PSU (p < 0.01).  

As a consequence, significantly higher rP/R values were detected in Chaetoceros sp. at 1 °C / 

20 and 50 PSU than in both strains of P. antarctica. In addition, rP/R was significantly higher 

in Chaetoceros sp. than in P. antarctica strain 109 at 4 °C / 35 and 50 PSU (p < 0.01). It should 

be highlighted that the differences in rP/R were mainly due to changes in respiration rates but 

not to changes in gross Pmax (Figure 13). 

The comparison of NPQmax values revealed the largest interspecies differences between 

Chaetoceros sp. and P. antarctica (Figure 12d). At all growth conditions, NPQmax values in 

Chaetoceros sp. were significantly higher (1 and 4 °C with p < 0.001; -1 °C with p < 0.05) than 

in P. antarctica. In contrast, there was no significant influence of temperature or salinity on 

NPQmax in neither Chaetoceros sp. nor in both Phaeocystis strains. The species-specific 

differences in NPQmax were further supported by the ratio of the half-saturation irradiance of 

NPQmax (E50) over the photo-acclimation parameter Ek (derived from fluorescence-based 

photosynthesis rates PF). Thus, the ratio E50/Ek describes the light-dependent NPQ induction 

status in relation to the saturation level of the electron transport chain. It is evident that the mean 

value E50/Ek for all experimental conditions was significantly higher in Chaetoceros sp. (mean 

E50/Ek = 4.0) compared to both strains of Phaeocystis (mean E50/Ek = 2.0; Figure 14). 
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Figure 13 - Correlation between a) ratio of gross photosynthesis to respiration (rP/R) and 

respiration and b) rP/R and maximum gross photosynthetic rates (Pmax) in Chaetoceros sp. 

and Phaeocystis antarctica (strains 109 and 764). Cultures of Chaetoceros sp. (filled 

triangles), P. antarctica strain 109 (filled circles), and strain 764 (open circles) were grown 

under different combinations of temperature (-1, 1, 4 °C) and salinity of the growth medium 

(20, 35, 50 PSU). Data in a) were fitted with an exponential regression. 
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Figure 14  - Ratio of half-saturation irradiance of maximum NPQ (E50) over characteristic 

irradiance Ek derived from fluorescence-based photosynthesis-irradiance curves in 

Chaetoceros sp., Phaeocystis antarctica strain 764 and P. antarctica strain 109. Level of 

significance is indicated by *** (p <0.001). 

 

 

The ratio of maximum fluorescence-based to maximum oxygen-based gross photosynthetic rate 

describes the activity of alternative electron pathways. From the data shown in Figure 15a, it 

is evident that PF/PO was very constant at a value of approximately 3.5 for almost all 

experimental conditions in Chaetoceros sp. (except data at -1 °C, 50 PSU). Similar to the 

observed species-dependence of NPQmax and a*phy, the PF/PO values were significantly higher 

in Chaetoceros sp. than in both Phaeocystis strains at 1 and 4 °C (p < 0.01; except for condition 

1 °C / 20 PSU in strain 764). Moreover, there was no significant influence of salinity on PF/PO 

at 1 and 4 °C.  

The mean value of the Chl-specific in vivo-absorption (a*phy) describes the absorption 

efficiency of algal cells. Under the experimental conditions, Chaetoceros sp. showed the lowest 

variation of a*phy values with no significant influence of neither temperature nor salinity 

(Figure 15b). Similarly, there was no significant influence of salinity on the absorption 

efficiency of both strains of P. antarctica. On the other hand, in both strains of P. antarctica a 

large variation of a*phy values was observed. Accordingly, at a growth temperature of 1 and 4 

°C, the a*phy values were significantly lower in both strains of P. antarctica at all salinities than 

in Chaetoceros sp. (p < 0.001). In addition, P. antarctica strain 764 showed significantly higher 

a*phy values than strain 109 at a growth temperature of 4 °C. In contrast, at -1 °C growth 

temperature a*phy values were in a comparable range for all three algal species.  
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Figure 15 - Physiological key parameters (PF/PO, a*phy) of Chaetoceros sp. and Phaeocystis 

antarctica. Mean values (± standard deviation) of physiological parameters measured in 

Chaetoceros sp. and Phaeocystis antarctica (strains 109 and 764) grown under different 

temperatures (-1, 1, 4 °C) and salinity of growth medium (20, 35, 50, PSU; white, light grey, 

dark grey, respectively): a) Ratio maximum fluorescence-/maximum oxygen-based 

photosynthesis rate (PF/PO, n = 4 – 11), b) Chlorophyll-specific absorption coefficient (a*phy, 

[cm2 (mg Chla)-1], n = 3). ‘n’ depicts the number of biological replicates. For P. antarctica no 

data were obtained at the condition -1 °C / 70 PSU (marked with ‘n.d.’). The same column 

colours with respect to medium salinity were applied for all subfigures. 

 

In summary, for all investigated species an effect of temperature on at least some physiological 

parameters is evident. In contrast, salinity did influence physiological parameters, albeit only 

at specific conditions. Moreover, for a number of parameters an interspecific difference 

between Chaetoceros sp. and P. antarctica was observed.  

 

 

 

 

 

 

 

 



Results 

 

[57] 

 

 

3.1.2. Effect of rP/R on NPP 

 

In field samples, it is often not possible to measure respiratory losses in phytoplankton cells 

(see above). However, for the estimation of daily-integrated NPP, consideration of respiratory 

losses is necessary. Since no existing data are available, respiratory losses are assumed to be in 

the range of 10 – 30% (see above). In the present study, it was intended to assess the potential 

deviation of integrated NPP under the assumption of different respiratory losses and to compare 

it to a respective NPP estimation with measured rP/R. Therefore, from the applied experimental 

conditions the data from specific experimental combinations (Table 3) were chosen to estimate 

NPP rates for different seasonal conditions. In addition, NPP was estimated on the basis of in 

situ light conditions (adopted from Petrou & Ralph, 2011) that are typical for different seasons 

in the SO. The light conditions differ in maximum irradiance, shape of illumination, and 

daylength (Figure 10). From the fitted oxygen-based P-E curves the daily integrated NPP 

(µmol O2 [mg Chla d]-1) was estimated from GP minus measured respiratory losses and 

compared to NPP calculated from GP minus assumed respiratory losses of 10, 20, and 30% 

(equals to rP/R 10, 5, 3.3), respectively (Figure 16).       

As expected from in situ light conditions, the highest NPP based on measured respiratory losses 

was estimated for spring and summer conditions, whereby NPP rates were always higher in 

Chaetoceros sp. than in P. antarctica (Figure 16a-b). Otherwise, lowest NPP (based on 

measured respiration) was estimated for winter condition (Figure 16d) with still positive values 

for Chaetoceros sp. and Phaeocystis strain 109, whereas for Phaeocystis strain 764 slightly 

negative NPP values were estimated. Regarding the effect of different rP/R on NPP, it was 

observed that under spring and summer conditions the assumption of 10 to 20% respiratory 

losses over-/underestimated NPP only slightly, respectively. This is in contrast to autumn and 

winter conditions (Figure 16c-d), where the assumption of respiratory losses >10% yielded a 

severe underestimation of NPP in comparison to NPP estimates for all investigated species.  
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Figure 16 - Daily integrated Net Primary Production (NPP, [µmol O2 (mg Chla)-1 h-1]) 

estimated from Gross oxygen Production (GP) minus measured respiratory losses and 

compared to NPP calculated from GP minus assumed respiratory losses of 10, 20, and 30% in 

Fragilariopsis cylindrus  (F.c.), Phaeocystis antarctica  (P.a., strains 764 and 109). 

Estimation of NPP is based on mean values (± sd) of fitted Photosynthesis-Irradiance curves 

for different experimental conditions that represent specific seasonal in situ-conditions: a) 

Spring, b) Summer, c) Autumn, d) Winter (see text for details). 

 

In addition to daily NPP estimates from oxygen-based photosynthesis (NPPO), daily NPP was 

also estimated from fluorescence-based photosynthesis rates (NPPF). The ratio NPPF/NPPO 

depicts the potential overestimation of daily NPP measured by fluorescence in relation to 

oxygen-based NPP estimates (Figure 17a). As with the ratio PF/PO, the ratio NPPF/NPPO 

depends on the activity of alternative electron sinks that can be addressed by fluorescence-based 

measurement of photosynthesis rates but not by oxygen evolution rates. Additionally, 

NPPF/NPPO can be influenced by the proportion of respiratory losses whereby high respiratory 

losses tend to increase NPPF/NPPO. Whereas the NPPF/NPPO was relatively stable between 

values of 2.5 to 2.9 in Chaetoceros sp., a trend of declining values of NPPF/NPPO from 

‘Summer’ to ‘Winter’ conditions was observed in P. antarctica.  
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Thus, under ‘Autumn’ and ‘Winter’ conditions, NPPF/NPPO was significantly lower in both 

strains of P. antarctica than in Chaetoceros sp. (p < 0.01).  

The estimation of PF (and subsequently also NPPF) takes into account the absorptivity of 

phytoplankton cells (measured as a*phy). Figure 17b depicts the a*phy values of Chaetoceros 

sp. and P. antarctica that correspond to the specific experimental condition chosen for NPP 

estimation. It is evident that a*phy values in Chaetoceros sp. were very constant for all 

conditions, which is in line with the stable ratio NPPF/NPPO. In contrast, a*phy values in both 

strains of Phaeocystis strongly increased from ‘Summer’ to ‘Autumn’ and ‘Winter’ conditions. 

This was a rather unexpected result since the increase of a*phy usually coincides with a higher 

absorptivity of the cells and should increase the ratio NPPF/NPPO, respectively. The latter was, 

however, not the case in cells of P. antarctica. Thus, it could be assumed that respiratory losses 

exert larger influence on the ratio NPPF/NPPO under these conditions than a*phy. 

 

      

 

Figure 17 - Fluorescence-based/oxygen-based estimation of net primary production and 

specific absorption.  a) The ratio fluorescence-based/oxygen-based estimation of Net Primary 

Production (NPPF/NPPO) under specific experimental conditions that represent specific 

seasonal in situ-conditions: Spring, Summer, Autumn, Winter (see text for details) in 

Chaetoceros sp. (C. sp.), Phaeocystis antarctica (P.a., strains 764 and 109). b) Chlorophyll a-

specific absorption coefficient (a*phy, [cm2 (mg Chla)-1]). 
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3.2. Iron limitation 
 

3.2.1. Cell parameters 
 

The particular organic carbon (POC) and particular organic nitrogen (PON) per cell varied 

significantly between the two treatments. Both POC and PON were higher by 18% (p < 0.01) 

and 28% (p < 0.001) in +Fe than Control conditions, respectively. The molar carbon to nitrogen 

ratios of cells grown under Control had a slightly higher (p < 0.01) C:N ratio, as reported in 

Table 5. Furthermore, with decreasing Fe availability daily carbon production rates declined 

(Table 5). If the POC values are normalized over volume (Stefels and van Leeuwe 1998), 

instead of over cells, differences between the two treatments are not visible anymore (Table 5). 

The growth rates of Chaetoceros sp. increased by 9% from 0.53 to 0.58 d-1 under Control and 

+Fe conditions, respectively (Table 5). Correspondingly, the cell length/volume increased in 

iron enriched cells compared to iron deplete cells.  

 

 

Table 5 - Elemental composition, growth and cell size of Chaetoceros sp. for Control and +Fe 

conditions. Values represent mean ± standard deviation (n=3). Significant changes (p<0.05, 

ANOVA) relative to the Control condition are denoted by *. 

  

 Control +Fe 

POC (pg C cell-1) 7.63 ± 0.42   9.26 ± 0.71* 

PON (pg N cell-1) 1.37 ± 0.06   1.76 ± 0.12* 

C:N (mol:mol) 6.48 ± 0.10   6.12 ± 0.16* 

Daily POC production rate (pg C cell-1 d-1) 4.04 ± 0.20   5.39 ± 0.86* 

μ  (d-1) 0.53 ± 0.02   0.58 ± 0.02* 

Cell length (μm) 5.63 ± 0,28   6.44 ± 0.11* 

Cell volume (μm3) 46.37 ± 5.75    58.39 ± 1.80* 

POCvol (pg C μm-3 ) 0.17 ± 0.03 0.16 ± 0.01 
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3.2.2. Pigments 
 

Generally, the pigment content of Chaetoceros sp. did not differed significantly in the two iron 

treatments, except for Chla, 20% lower in Control than under +Fe treatment (p < 0.01), and ß-

carotene, decreased by 43% in Control vs. +Fe treatment (p < 0.001), as reported in Table 6. 

  
 
 
 
 

 

 

 

 

 

 

 

 

Table 6 - Cellular concentrations (fg cell-1) of the light harvesting pigments (LHP): 

chlorophyll a (Chla), chlorophyll c
2 

(Chl c
2
), fucoxanthin (Fuco), as well as of the light 

protective pigments (LPP): ß-carotene (ß-car), diadinoxanthin (Dd), diatoxanthin (Dt) and the 

ratio of LHP/LPP for Chaetoceros sp. grown under Control and +Fe conditions. Values 

represent mean ± standard deviation (n=3). Significant changes (p<0.01, ANOVA) in pigment 

concentrations relative to the controls denoted by *.  

 

 

 

 

 

 

 

 

  

 Control +Fe 

Chla (fg cell-1)  126.5 ± 8.8     158.7 ± 16.5* 

Chlc2 (fg cell-1)    17.9 ± 1.7  19.9 ± 3.6 

Fuco (fg cell-1)    75.1 ± 6.1    80.5 ± 12.0 

ß-car (fg cell-1)      2.8 ± 0.3      4.9 ± 0.6* 

Dd (fg cell-1)    22.8 ± 1.7 25.5 ± 8.2 

Dt (fg cell-1)      0.4 ± 0.1    0.5 ± 0.3 

LHP/LPP      9.5 ± 0.4  10.5 ± 2.7 
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3.2.3. Chla based fluorescence parameters 
 

Iron availability influenced strongly the photophysiology of Chaetoceros sp., as shown in 

Table 7. The maximum PSII efficiency of dark-adapted cells (Fv/Fm) was significantly higher 

(p < 0.001) in the +Fe treatment compared with the Control treatment, being 0.50 ± 0.01 and 

0.38 ± 0.01, respectively. The same trend was observed also for the connectivity between 

adjacent photosystems P, with a significantly 27% increase in the +Fe compared to Control 

treatment (0.44 ± 0.02 and 0.32 ± 0.03, p < 0.001).  Similarly, the concentrations of functional 

reaction centers of PSII per cell RCIIcell decreased significantly by 26% in the Control (p < 

0.001). In contrast, the functional absorption cross section of PSII, σPSII, was 10% higher under 

Control than under +Fe. 

  

 

Table 7 - Chla fluorescence-based photophysiological parameters in Chaetoceros sp. for 

Control and +Fe conditions. Values represent mean ± standard deviation (n=3). Significant 

changes (p < 0.05, ANOVA) relative to the Control condition are denoted by *. 

 

The same positive effect is visible also in electron transport rates (ETR): absolute ETR (Figure 

18) showed a clear difference between Control and +Fe treatment. Particularly, the maximum 

absolute electron transport rates (aETRmax) almost doubled from Control to +Fe, rising from 

156.5 ± 22.4 to 304.2 ± 24.3 e- PSII-1 s-1 (Table 8).  

 Control +Fe 

Fv/Fm (rel. unit) 0.38 ± 0.01 0.50 ± 0.01* 

P (rel. unit) 0.32 ± 0.03 0.44 ± 0.02* 

RCIIcell (amol cell-1) 0.60 ± 0.02 0.81 ± 0.05* 

σPSII (nm2) 5.35 ± 0.11 4. 77 ± 0.06* 
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Figure 18 - Absolute electron transport rates (aETR) in Chaetoceros sp. grown under Control 

(open circle) and +Fe (filled circle) conditions. Values represent mean ± standard deviation 

(n=3).  

The photo-acclimation parameter Ek (derived from fluorescence-based photosynthesis rates PF) 

revealed a very different light acclimation status of Chaetoceros cells, depending on the iron 

condition. Accordingly, the Ek value increased more than 3-fold from Control to +Fe conditions 

(Table 8). However, this did not affect the sensitivity to photoinhibition as deduced from the 

values of Fv/Fm recovery (Table 8). 

 

 

Table 8 - aETRmax, photoacclimation parameter Ek and Fv/Fm recovery (%) in Chaetoceros 

sp. for Control and +Fe conditions. Values represent mean ± standard deviation (n=3). 

Significant changes (p < 0.01, ANOVA) relative to the Control condition are denoted by *. 

 

 Control +Fe 

aETRmax (e
- PSII-1 s-1) 156.5 ± 22.4   304.2 ± 24.3* 

Ek value 33.8 ± 8.2   124.2 ± 30.0* 

Fv/Fm recovery (%) 46.9 ± 1.5 51.0 ± 1.8 
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Neither the light-dependent induction kinetics nor the NPQ at the highest light intensity in 

Chaetoceros was influenced by the different iron conditions (Figure 19). 
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Figure 19 - Non photochemical quenching (NPQ) in Chaetoceros sp. for Control (open 

circle) and +Fe (filled circle) conditions. Values represent mean ± standard deviation (n=3). 

 

3.2.4. Oxygen-based photosynthesis and respiration rates 
 

The different iron treatments induced similar effects on gross oxygen production rates (Figure 

20a) as observed for the fluorescence-based aETR (Table 8 and Figure 18). As depicted in 

Figure 20a, GPmax in iron deplete condition was only 24% of the GPmax in the iron replete 

condition. The +Fe treatment reached gross photosynthesis (GP) rates of 397 μmol O2 mg Chla-

1 h-1, while the Control conditions produced at the highest 96 μmol O2 mg Chla-1 h-1. An even 

greater difference between +Fe and Control conditions was measured in net photosynthesis 

(NP) rates (Figure 20b), with NPmax values equal to 287 and 55 μmol O2 mg Chla-1 h-1, 

respectively. Unfortunately, the relatively low Chla concentration used in these measurements 

caused a low signal/noise ratio and resulted in a large standard deviation. Nevertheless, the 

measured differences between both iron conditions follow the same trend as aETR measured 

by fluorescence, i.e. the Control treatment caused a significant decrease in GP and NP compared 

to +Fe treatment, like aETR (see above).  
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Similarly, respiration (R) was significantly lower under Control conditions (p < 0.05, Table 9). 

The ratio of GP to R (GP/R, Table 9) was also calculated, interestingly showing no variations 

between the two analyzed conditions. Both the values reported in Table 9 are referring to 

growth light intensity (i.e. 100 μmol photons m-2 s-1). 

 

 

Table 9 - Respiration (R) and GP/R in Chaetoceros sp. for Control and +Fe conditions. 

Values represent mean ± standard deviation (n=3). Significant changes (p<0.05, ANOVA) 

relative to the Control condition are denoted by *. 

 

 

 

 Control +Fe 

Respiration (R) 

[μmol O2 (mg Chla h)-1] 
−39.8 ± 8.9  −112.3 ± 56.3* 

GP/R       2.9 ± 1.7      2.7 ± 1.6 
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Figure 20 -   Gross (a) and net (b) photosynthesis in Chaetoceros sp. for Control (open circle) 

and +Fe (filled circle) conditions. Values represent mean ± standard deviation (n=3). 
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4. Discussion 
 

4.1. Temperature and salinity 
 

4.1.1. Effects on photosynthetic rates 
 

Although numerous studies have highlighted the importance of the phytoplankton contribution 

on microbial respiration and gross carbon production in the SO (Arístegui et al. 1996), the 

quantitative extent of respiratory losses by phytoplankton is not well understood. Additionally, 

to our knowledge there is no study dealing with the influence of multiple stressors on both, 

photosynthesis and respiration rates, in Antarctic phytoplankton. Thus, the aim of this study 

was the investigation of variations in the ratio photosynthesis to respiration, in dependence on 

combined temperature and salinity changes in two typical phytoplankton strains of the SO. 

The analysis of photosynthetic rates revealed no clear correlation between temperature and Pmax 

values in Chaetoceros sp. and Phaeocystis antarctica over all temperatures tested. This 

observation is rather unexpected, even though in accordance with previous studies (Tilzer and 

Dubinsky 1987; Thomas et al. 1992), because Pmax is mainly defined by the activity of the 

enzyme RubisCO, whose activity should be directly correlated with temperature. A possible 

explanation for this contradictory observation might be that CO2 solubility increases more than 

O2 solubility when temperature diminishes (Kranz et al. 2014). Moreover, the temperature 

effect can be compensated by a higher cellular RubisCO content at lower temperature (Young 

et al. 2015).  

For salinity conditions, only at a growth temperature of 4 °C was the trend of decreasing Pmax 

at higher salinity observed in all investigated species. It should be noted, however, that the 

natural variability of water salinity at 4 °C is rather small in the SO. Thus, natural phytoplankton 

will most likely not be confronted with a combination of higher temperature and salinity values 

> 40 PSU. On the other hand, the fact that only Chaetoceros sp. but not P. antarctica was able 

to grow at a combination of -1 °C and a salinity of 70 PSU shows that the ability to acclimate 

to such conditions is restricted to phytoplankton species usually found in sea ice.  

The comparison of the results of different studies with respect to the physiological acclimation 

of phytoplankton to different salinity conditions reveals a huge variability and partly 
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contradictory results (Palmisano et al. 1987; Arrigo and Sullivan 1992; Petrou and Ralph 2011). 

This could be due to the species-specific acclimation potential, but also to the different 

experimental conditions in the mentioned studies. Species-specific photosynthetic capacity in 

our study highlights different sensitivities to temperature and salinity changes, constituting an 

important mechanism in ecological niche adaptation. Precisely, Chaetoceros sp. was better 

adapted to sea-ice-like environment (low temperature, high salinity), while P. antarctica 

showed a lack of plasticity, dealing with the same conditions. The ability to acclimatise to 

changing environmental conditions might be crucial for the survival or extinction of Antarctic 

species. A new equilibrium in the phytoplankton community could occured, as consequence of 

climate change, with the overcoming of some species among others.  

The mean values of Pmax in P. antarctica (43 µmol O2 (mg Chla h)-1) and in Chaetoceros sp. 

(50 µmol O2 (mg Chla h)-1) are close to photosynthesis rates of approximately 60 O2 (mg Chla 

h)-1 measured in phytoplankton from SO under low-light conditions given in (Tilzer and 

Dubinsky 1987; Thomas et al. 1992; Gleitz and Thomas 1992; Thomas and Dieckmann 2002). 

Thus, the relatively low Pmax values of the present study compared to some other studies (Petrou 

et al. 2011) are most probably due to the low growth light intensity used in the present study. 

This hypothesis is supported also by a  recent study with different Antarctic species, where the 

increase in Pmax with high light was confirmed (Kulk et al. 2019). 

It was rather surprising that no photo-inhibitory effects (e.g. decrease of photosynthesis rates) 

were observed in the measurements of P-E curves at high irradiances with up to 700 μmol 

photons m-2 s-1. In addition, NPQmax was reached always at the highest applied irradiance within 

P-E curves (713 μmol photons m-2 s-1), while photosynthetic rates were saturated at least at 

about 400 μmol photons m-2 s-1. This could be interpreted in the way that the full potential of 

light protection in the investigated species was required at very high irradiance only, which is 

an indication of a very high overall potential of light protection. Thus, in our opinion, the higher 

NPQmax values in Chaetoceros sp. are not an indication of photo-inhibitory stress but of a high 

photoprotective potential. These results are in contrast to the study of (Petrou and Ralph 2011), 

where strong photo-inhibitory effects were observed in Chaetoceros sp. in measurements of 

oxygen evolution. It could be speculated that these differences were induced by the different 

lengths of acclimation period to experimental conditions, with three days in (Petrou et al. 2011) 

and at least one week in the present study. Longer acclimation periods to changing temperature 

and salinity could have induced photoprotective mechanisms (Lyon and Mock 2014) that 

prevented photo-inhibitory effects at high irradiance. 
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4.1.2. Effects on respiratory losses and rP/R 
 

No linear correlation between respiration rates and the salinity of the growth medium was 

revealed, like with Pmax. In contrast to photosynthetic rates, a general trend of increasing 

respiration rates with the increase of growth temperature from 1 to 4 °C at a salinity of 35 PSU 

was observed in both strains, Chaetoceros sp. and P. antarctica. In P. antarctica, this trend was 

also found at a salinity of 50 PSU. These changes in respiration rates also influenced the 

temperature-dependent changes of the ratio of gross photosynthesis to respiration (rP/R). At a 

salinity of 35 PSU, Chaetoceros sp. and both strains of P. antarctica showed decreasing rP/R 

with increasing growth temperature from 1 to 4 °C. From these results two major conclusions 

could be drawn: first, the changes in rP/R were primarily due to variations in respiration but not 

in photosynthetic rates, and second, rP/R is primarily temperature-dependent, whereas the 

impact of the salinity is of minor importance for rP/R.  

These results strongly support the few previous observations of a temperature dependence of 

respiration rates in phytoplankton of the SO (Tilzer and Dubinsky 1987; Thomas et al. 1992; 

Regaudie-de-Gioux and Duarte 2012). The novel finding of the present study is that salinity 

influenced this temperature dependence of respiration only to a very small degree in 

Chaetoceros sp., whereas in P. antarctica an effect of salinity was observed specifically in the 

combination with low salinity (20 PSU). 

Moreover, this study provides values for taxon-specific respiratory losses in SO phytoplankton. 

Indeed, it should be noted that the degree of temperature dependence of respiration was 

different in the comparison of Chaetoceros sp. and the two strains of P. antarctica. While 

Chaetoceros sp. did show the highest mean values of rP/R with the least variability in 

dependence on experimental conditions, a distinctly larger variability of rP/R values was 

observed in P. antarctica in the comparison of -1 and 4 °C growth temperature.  

Accordingly, for all investigated experimental conditions, the respiratory losses in relation to 

GP were in the range of 8 – 14% in Chaetoceros sp., 8 – 25% in P. antarctica strain 764, and 

8 – 33% in P. antarctica strain 109, with the lowest and highest losses at -1 and 4 °C, 

respectively. This is similar to the range of respiratory losses in natural phytoplankton of the 

SO during austral summer given in (Arístegui et al. 1996).  
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The species-specific differences of rP/R were also evident under different seasonal conditions 

where P. antarctica showed significantly higher rP/R values in autumn/winter compared to 

spring/summer whereas, the season-specific rP/R values varied not significantly in Chaetoceros 

sp..  

In phytoplankton from temperate habitats, diatoms show the higher maximum respiratory losses 

(up to 50%) than Haptophyte (up to 14%; Geider and Osborne 1989). Our study shows that this 

observation cannot be generalized. To our knowledge there are no other taxon-specific 

investigations of respiratory losses in SO phytoplankton. 

 

4.1.3. Respiratory losses and net primary production 
 

An important aim of the present study was the evaluation of the impact of different rP/R on 

NPP estimates in representative phytoplankton species from the SO. Therefore, the present data 

set was used to obtain general information on the effect of different rP/R on NPP estimates for 

specific irradiance, temperature, and salinity combinations that represent different seasonal 

conditions. The comparison of species-specific NPP for the different seasons showed a 

comparable pattern for all investigated species. The highest NPP was calculated for the 

‘Summer’ condition with high irradiance, short dark period, and high water temperatures. 

Consequently, there was no negative effect of assumed respiratory losses up to a value of 20% 

on NPP estimates in comparison to NPP estimates with measured respiratory losses. Only with 

the assumption of 30% respiratory losses was there a significant underestimation of NPP for 

Chaetoceros sp. and P. antarctica strain 764 compared to NPP estimates with measured 

respiratory losses, respectively. Due to the saturation of photosynthesis at relatively low 

irradiance in the investigated algal strains, the NPP estimates did not depend on the differences 

in the maximum irradiance at the different seasonal conditions, but were mainly influenced by 

the length of the daily illumination period and the thus correlated respiratory losses. Therefore, 

the ‘Spring’ condition (16/8h, light (L) /dark (D) period) yielded slightly lower NPP estimates 

compared to the ‘Summer’ condition (19/5h, L/D), whereas NPP estimates under the ‘Autumn’ 

condition (11/13h, L/D) were significantly reduced. In the latter condition, it is noteworthy that 

the assumption of respiratory losses > 10% yielded significant underestimates of NPP compared 

to the estimation with measured respiratory losses. These seasonal differences in NPP estimates 

of the present study are comparable to the NPP estimation in Petrou and Ralph (2011).  
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The strongest impact of respiratory losses was observed in NPP estimates for the ‘Winter’ 

condition (6/18h, L/D). Here, a positive NPP (estimated on the basis of measured respiratory 

losses) was observed for Chaetoceros sp. and P. antarctica strain 109, only. Due to the very 

short light period, the total photosynthesis rate and carbon assimilation were strongly reduced. 

This means that these algal strains were able to keep respiratory losses at a minimum and would 

survive unfavourable ‘Winter’ conditions. This is in line with results of (Thomas et al. 1992) 

where strongly reduced but still positive carbon uptake rates were measured under a 

combination of low irradiance (5 µmol m-2 s-1) and low temperature (-1.5 °C) in the diatom 

Chaetoceros. The importance of minimized respiratory losses under winter conditions is also 

deducible from the assumption that respiratory losses >10% would yield negative NPP 

estimates and would strongly impede the ability of phytoplankton cells to survive such 

conditions. The same holds true for the P. antarctica strain 764 for which a negative NPP was 

estimated on the basis of measured respiratory losses. It has to be mentioned that increased 

salinity is also an important factor under these conditions. Whereas Chaetoceros sp. grew even 

at a salinity of 70 PSU, there was no growth observed in P. antarctica at this salinity, with 50 

PSU being the highest salinity to promote growth in P. antarctica. Obviously, there were 

species-dependent and even strain-dependent differences in the acclimation to the combination 

of low temperature, low irradiance, and increased salinity. On the other hand, these observations 

are in line with the ecological niche in which these algae are found: Chaetoceros sp. is a typical 

ice alga of the SO, whereas P. antarctica prefers open ocean areas as outlined above. 

To the best of our knowledge, the independence of NPP from variations of rP/R due to different 

environmental conditions was not shown before. 
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4.1.4. Species specific differences in acclimation to variations in 

temperature and salinity 

 

One of the major results from this study is the observation of species- and even strain-specific 

differences in several parameters measured. The first to mention is the maximum NPP estimate 

particularly under ‘Spring’ and ‘Summer’ conditions. In general, the highest NPP estimates 

were observed for Chaetoceros sp., whereas NPP for P. antarctica strains was significantly 

lower. Thus, the patchiness observed in field measurements of NPP in the SO (Arístegui et al. 

1996) could be caused by different species composition in combination with hydrogeographical 

differences at the investigated field stations. 

The strongest interspecies differences were observed in the maximum NPQ values. High mean 

NPQmax values between 6.4 and 12.9 were observed in Chaetoceros sp., whereas NPQmax in P. 

antarctica was in the range of 1 to 2.4 (with the exception of NPQmax = 3.6 for strain 764 at 1 

°C / 20 PSU). Particularly, the NPQmax values for Chaetoceros sp. were distinctly higher in the 

present study compared to previous publications (Park and Lee 2010; Petrou et al. 2011; Petrou 

et al. 2014). This could be caused by methodological differences in the measurement of NPQ, 

e.g. Rapid light curves applied in the studies mentioned above vs. P-E curves with steady state-

conditions as used in the present study. On the other hand, the species dependence of NPQmax 

values in the comparison of different Antarctic phytoplankton species and, in particular, the 

higher NPQmax in diatoms than NPQmax in P. antarctica was also shown in previous publications 

(Kropuenske et al. 2009; Alderkamp et al. 2012; Petrou et al. 2011). The non-photochemical 

quenching is designated as a very important mechanism to adapt to dynamic light conditions as 

experienced by the phytoplankton in their natural habitats (Lavaud et al. 2007). Thus, the 

differences in NPQmax in Antarctic phytoplankton were explained by the acclimation of the 

species to different environmental conditions, e.g. to sea ice or highly stratified water conditions 

in the case of Chaetoceros sp., in contrast to deeply mixed waters in the pelagic zone in the 

case of P. antarctica (Petrou et al. 2011).  

With respect to an acclimation to dynamic environmental conditions, the extent of alternative 

electron transport is of importance. Alternative electrons are not used for the reduction of 

NADP+. Instead, they contribute to e.g. cyclic electron transport at PSII and PSI, to the water-

water cycle, to photorespiration, to the reduction of nitrate and sulphate (Halsey and Jones 2015; 
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Wagner et al. 2017), and, thus, to the generation of the trans-thylakoid pH gradient. Therefore, 

it is assumed that the activity of alternative electron transport changes the photosynthetic 

NADPH/ATP ratio in favour of ATP (STREB et al. 2005). It is, however, not known whether 

this additional ATP production could compensate for ATP production by e.g. lowering 

respiration rates. The number of alternative electrons is estimated by the difference between 

fluorescence-based and oxygen-based photosynthesis rate (PF/PO). Particularly in diatoms, the 

activity of alternative electron pathways contributes to photoprotection under variable 

environmental conditions (Wagner et al. 2016). In the present study, it is noteworthy that the 

diatom Chaetoceros sp. showed a relatively constant but higher ratio PF/PO than the strains of 

P. antarctica. This is in line with the significantly higher Chl-specific absorptivity (a*phy) of 

the cells of Chaetoceros sp. at 1 and 4 °C growth temperature compared to P. antarctica. The 

a*phy value describes the wavelength-dependent and Chla-normalized absorptivity (spectrally 

integrated optical absorption cross section) of phytoplankton cells. It depends not only on Chl 

concentration but also on the content of accessory pigments and the package effect which is 

usually adjusted by phytoplankton cells in response to light or nutrient acclimation (Kirk 2010). 

In this way, the α-slope of P-E curves is directly correlated with a*phy. In the present study, 

a*phy was used to convert rETR into fluorescence-based photosynthesis rates (PF). Thus, the 

higher a*phy values in Chaetoceros sp. resulted in higher PF/PO, and it could be assumed that 

Chaetoceros sp. was forced to dissipate a larger fraction of absorbed light by alternative 

electron pathways than was necessary in P. antarctica. These differences were even more 

pronounced when the season-specific ratio of fluorescence-based to oxygen-based NPP 

estimated were compared. For the ‘Spring’ condition, there were significant differences in the 

NPPF/NPPO ratio between Chaetoceros sp. and P. antarctica. Since in P. antarctica these 

differences were in contrast to the season-specific changes in a*phy it has to be concluded that 

the relative extent of respiratory losses under the shorter daylight periods in ‘Autumn’ and 

‘Winter’ conditions is of major importance for the ratio NPPF/NPPO.  

Thus, the investigated algal strains showed very different strategies to cope with changing 

environmental conditions. Accordingly, Chaetoceros sp. appears to be less flexible in the 

regulation of the extent of photoprotective mechanisms (NPQ and alternative electrons), but the 

photoprotective level is generally higher in Chaetoceros sp. than in P. antarctica.  
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4.2. Iron limitation 
 

4.2.1. Iron limitation effects on the physiology of Chaetoceros sp. 
 

Iron is essential for redox-based reactions and is required for photosynthesis, respiration, and 

the nitrate and sulfur utilization in phytoplankton (Behrenfeld and Milligan 2013; Raven 2013). 

Since iron is important for the proteins of the electron transport chain (ETC), iron deficiency 

directly influences the photosynthetic performance of the cells (Behrenfeld and Milligan 2013). 

In agreement with this, the strongest responses of the here tested Antarctic diatom Chaetoceros 

sp. to iron depletion were found in PSII. Hence, the quantum efficiency of photosynthesis 

declined from 0.50 to 0.38 (Table 7). Similarly, the number of functional reaction centers per 

cell, RCIIcell, was reduced under Control, as well as the connectivity between photosystems II, 

P, a response commonly observed under iron limitation. Conversely, the functional absorption 

cross section of PSII, σPSII, increased in the cells under the latter condition. Such a response is 

attributed to an increase in the ratio of antenna complexes relative to the reaction center core 

complexes (Greene et al. 1991). It was suggested that Southern Ocean phytoplankton species 

in particular counteract the diminished number of iron-rich reactions centers with a larger σPSII 

(Strzepek et al. 2012), as frequently observed for other Antarctic Chaetoceros species 

(Timmermans et al. 2001; van Oijen et al. 2004; Petrou et al. 2014; Trimborn et al. 2019). This 

statement is supported by the comparison of the initial slope of the P-E curve, with α values 

being higher in Control compared to +Fe treatment (Figure 18).  

In the photosynthetic apparatus, both PSI and cytochrome b6f  have high iron requirements. The 

limiting components of the electron flow in the thylakoid and mitochondrial membranes are the 

cytochrome b6f and the bc complex, respectively. It has been shown (Wilhelm and Wild 1984) 

that the amount of Rubisco and cytochrome f (cyt f) are regulated in a coordinated manner and 

therefore, the concentration of cyt f correlates with GPmax. Both cytochrome complexes, i.e. b6f 

and bc, contain 3 cytochrome molecules, each with an iron atom. Under iron limitation, iron 

cannot be replaced and the cytochrome complex cannot be substituted by alternative electron 

carriers. Thus, iron limitation strongly limits the capacity of aETR (Figure 18); precisely, the 

aETRmax in the Control was almost the half compared to +Fe treatment (Table 8).  
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The decrease in photosynthetic rates under iron deficiency was even more impressive 

considering GPmax and NPmax. Specifically, the maximum photosynthetic values in the Control 

compared to +Fe treatment were only 20% and 25% for NP and GP (Figure 20), respectively. 

The differences in light-saturated GP could be accounted for by a lowered Rubisco content in 

Control condition. Indeed, it was already shown that the relative abundance of the carboxylating 

enzyme (Rubisco) decreased in response to iron starvation (Geider et al. 1993). Anyhow, the 

significantly lower values of GPmax, aETRmax and Ek (discussed later) in Control compared to 

+Fe conditions are in line with other data reported in literature for Chaetoceros (Petrou et al. 

2014).  

In addition, iron deficiency reduced the light saturation index Ek (Table 8), showing the 

inability of these cells to use higher irradiance for increased carbon assimilation, as shown by 

the daily POC production (Table 5). This aspect is in line with the reduction in growth rates (μ; 

Table 5) under Control conditions, clearly indicating an energy problem.  

The lower daily carbon production rates, POC and PON content per cells (Table 5) could be 

caused by a less efficient energy transfer from photochemistry to biomass production under 

Control conditions, as already suggested for Chaetoceros debilis (Trimborn et al. 2019). 

Neverthless, if POC data are normalized to cell volume (POCvol, Table 5) rather than to number 

of cells, the reduction in POC production is not visible anymore. Therefore, we can suggest that 

the cell size reduction compensated and ensured similar high POC production in the two 

treatments. The relevant decrease in cell volume, Chla quotas, rates of POC production under 

iron limitation, have been measured not only in Antarctic diatoms, but also in other Antarctic 

taxa such as prymnesiophytes e.g. P. antarctica (Koch et al. 2019).  

As a consequence of the above mentioned lowered amount of cyt b6f, it was further suggested 

that Fe limitation in diatoms lowers the photoprotection by NPQ (Strzepek and Harrison 2004). 

This is due to the function of cyt b6f complexes as proton translocators across the thylakoid 

membrane. A diminished amount of cyt b6f should also lower the proton translocation rate and 

thus, the extent of the proton gradient across the thylakoid membrane. Nevertheless, the pH 

is an indispensable prerequisite for the formation and the extent of NPQ (Tian et al. 2019).  
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Indeed, no significant differences in non-photochemical quenching, NPQ, were observed 

between the two treatments (Figure 19). This is in contrast with what was reported by Petrou 

et al. 2014 where a strong difference was reported. However, variations in the experimental set 

up should be considered. Firstly, Chaetoceros cells were grown at different light intensity, 

namely 30 μmol photons m−2 s−1 in Petrou et al., while the light intensity in the present study 

was significantly higher (i.e. 100 μmol photons m−2 s−1). Secondly, the NPQmax values in Petrou 

et al. were obtained with a light intensity 5 times higher than in this study (2260 μmol photons 

m−2 s−1 and 492 μmol photons m−2 s−1, respectively).  Having a closer look at the data in former 

study, the NPQ values in iron limited cells are even lower than in the present study until 500 

μmol photons m−2 s−1, while only at higher light intensities, NPQ strongly increased during the 

PI curve. Recently, also Trimborn et al. (2019) observed an enhanced NPQ for Control relative 

to +Fe cells in Chaetoceros debilis cells, suggesting this was due to the operation of PTOX. 

The large decrease of the electron transport capacity (Figure 18 and Figure 20) should have 

forced the Control cells to re-balance the light absorption capacity with the lower capacity of 

photosynthetic energy usage in cell’s metabolism. Indeed, with a severe decrease of cellular 

Chla content (Table 6) Fe-deplete cells aimed to re-balance the reduced light use capacity and 

the light supply by the adjustment of absorption capacity, rather than dissipate the excess of 

light through NPQ. This re-balance of light supply and light use was obviously quite efficient, 

since the cells were neither forced to increase their LPP, nor their NPQ capacity (Table 6 and 

Figure 19). A similar acclimation strategy can be observed under other nutrient deprivation, 

e.g. nitrate limitation (Young and Beardall 2003). Neither diadinoxanthin, nor diatoxanthin 

were significantly different in the two treatments (Table 6), so we can assume that NPQ was 

based on qE and not on other NPQ components, as e.g. qI (photoinhibition). Moreover, the P-

E curve (Figure 20) and the Fv/Fm recovery rate (Table 8) did not reveal any indications for 

an increased sensitivity to high irradiances in cells under Control conditions.  

Noteworthy is the strong decrease of the ß-carotene content under Control conditions (Table 

6), possibly due to the decrease in RCIIcell (Table 7). Since ß-carotene is attached to the 

reaction centers of PSII in the photosynthetic apparatus, a diminution of the latter could be 

correlated positively with the former. To the best of our knowledge, among the different 

studies analyzing pigments in Antarctic diatom, no data about β-carotene content were 

reported. 
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4.2.2. Respiratory losses and rP/R 
 

Under natural conditions, the estimation of NPP is hindered by difficulties in the measurement 

of respiratory loss rates of phytoplankton in dark periods. Therefore, calculations of NPP have 

to employ algorithms with fixed respiration rates, or models with very noisy respiration data 

(Moisan and Mitchell 2018).  

This constraint is mainly due to methodological limitations (reviewed in Marra 2009). Net 

community respiration can be measured from the consumption of O2 in samples incubated in 

the dark. However, respiration by phytoplankton alone cannot be separated by heterotrophs’ 

respiration. Nowadays, respiration is still measured either from laboratory culture or, indirectly, 

from other kinds of measurements.  

Therefore, a novel aspect of this study was the measurement of the respiration rates in the 

Antarctic diatom Chaetoceros sp. (Table 9). The iron-limited conditions induced a drastic 

decrease of R by 65% compared to +Fe conditions at the growth light intensity. This had a 

strong influence on NP rates (Figure 20b), for example in the light compensation point, which 

in Control conditions was 70% lower than in Fe replete conditions. Surprisingly, under low 

irradiance (below 80 μmol photons m-2 s-1) the NP rates in Control were considerable higher 

than in +Fe condition. Contrarily, at growth light intensity (100 μmol photons m-2 s-1), the NP 

rate of cells under Control conditions was only slightly lower than in cells under +Fe conditions. 

However, GP rates show that the general photosynthetic capacity was strongly reduced in 

Control cells, with GPmax being 76% lower than in Fe replete cells (Figure 20b). Therefore, Fe 

deplete cells showed a very efficient acclimation to iron limitation by decreasing their 

respiratory losses. This compensates for the inevitable limitations of photosynthesis under 

Control conditions. This is also reflected by the fact that the ratio of photosynthesis to 

respiration (GP/R, Table 9) did not change in response to iron-deplete conditions. Thus, up to 

an irradiance of 100 μmol photons m-2 s-1 the iron limitation is not a major issue for the growth 

rate of Chaetoceros sp. due to very efficient acclimation. 
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5. Conclusions and Future Perspectives 
 

The increase of atmospheric CO2 has been predicted to impact the seasonal cycle of inorganic 

carbon in the global ocean (Le Quéré et al. 2018) and, indeed, the amplitude of this cycle has 

increased already over the last decades (2018). Especially at high latitudes, like in the SO, 

biological CO2 draw-down represents a key factor and leads to an oceanic pCO2 (partial 

pressure of CO2) minimum in summer, when biological productivity is high (Hauck 2018). 

However, biological production is highly seasonal and physical changes in the growing season 

determine its response to climate change (Hauck et al. 2015). Nevertheless, oceanographers 

lack an understanding of fundamental properties of plankton dynamics, leaving a large gap in 

our knowledge of how biological processes contribute to the ocean’s C cycle (Marra 2009). 

One of these crucial properties is respiration, which, until now, has always been inferred from 

laboratory culture or, indirectly, from other kinds of measurements. Furthermore, current 

methods usually estimate community respiration, without distinction between autotrophic and 

heterotrophic respiration. 

In light of the importance of the SO for the atmospheric CO2 level (Landschützer et al. 2015; 

Gruber et al. 2019), it is essential to understand the influence of combined changes of 

environmental factors on respiratory losses in relation to the photosynthetic activity of the 

phytoplankton. Knowing autotrophic respiration, we can more accurately predict phytoplankton 

growth rates and their role in the microbial food web.  

Therefore, the present work aims to fulfill this gap in our knowledge. Experimental data on the 

variability of photosynthesis to respiration ratio (rP/R) in ecological Antarctic phytoplankton 

species were successfully collected. In this respect, two key species from the Southern Ocean 

were investigated: the diatom Chaetoceros sp. and the prymnesiophyte Phaeocystis antarctica. 

Three hypotheses were tested, analysing this ratio under different environmental conditions and 

three parameters were also investigated, testing this basic hypothesis: the P/R ratio varies as a 

function of temperature and nutrient availability in an ecotype-dependent manner.  

Laboratory-based methods were employed to measure photosynthetic and respiration rates, 

fluorescence and cell parameters. More specifically, the effect of temperature and salt 

concentration were examined, analysing the following hypotheses: 
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1. P/R ratios are temperature dependent in a way that the daily carbon assimilation rate is 

significantly influenced. 

2. Temperature dependency of rP/R persists under different salinity conditions.  

It was proved that the P/R ratio is temperature dependent. Particularly, the changes in this ratio 

were principally due to variations in respiration, rather than in photosynthesis. A few studies 

have reported a temperature dependence of respiration rates in SO phytoplankton (Tilzer and 

Dubinsky 1987; Thomas et al. 1992; Regaudie-de-Gioux and Duarte 2012), but no information 

is available about salinity effects. This parameter was the subject of study of our second 

statement, where the interpretation of the results was complicated. More specifically, salinity 

has only a secondary importance on the rP/R variations, although with species-specific 

differences. Different salinities, indeed, influence the temperature dependence of respiration 

only to a minor degree in Chaetoceros sp., while totally new was the observed effect of low 

salinity (20 PSU) on the same parameter in P. antarctica. Furthermore, Chaetoceros sp. showed 

the highest rP/R mean values, with the least variability in dependence on experimental 

conditions, whereas a distinctly larger variability of rP/R values was observed in P. antarctica 

in the comparison of -1 and 4 °C growth temperatures. The species- and even strain-specific 

differences in rP/R were also evident in other physiological parameters measured.  

Thus, the investigated algal strains showed very different strategies to cope with changing 

environmental conditions. Accordingly, Chaetoceros sp. appears to be less flexible in the 

regulation of the extent of photoprotective mechanisms (non-photochemical quenching and 

alternative electrons), but the photoprotective level is generally higher in Chaetoceros sp. than 

in P. antarctica. The characteristic photoacclimation strategies are perfectly in line with the 

ecological niche occupancy of the two taxonomic groups. Precisely, Chaetoceros sp. is better 

adapted to sea-ice-like environment (low temperature, high salinity), while P. antarctica 

showed a lack of plasticity in dealing with the same conditions. 

However, the rP/R variability had only a small influence on estimated NPP rates for specific 

seasonal conditions. This was due to the finding that phytoplankton cells were able to keep 

respiratory losses relatively low. According to the collected data it is deduced, that respiratory 

losses in the range of 10 – 15% should represent realistic values to convert measured GPP into 

NPP under field conditions. With respect to the low level of respiratory losses, the accurate 

determination of photosynthesis rates becomes even more important.  
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In this respect, the observation of a very different extent of alternative electron pathways in the 

comparison of Chaetoceros sp. and P. antarctica is a remarkable result. Thus, the estimation of 

NPP by the measurement of, for example, variable Chl fluorescence in populations with 

different species composition and at different seasonal conditions could be significantly 

influenced by the activity of these alternative electron pathways. Nevertheless, it should be 

emphasized that changes of other environmental factors (e.g. nutrient availability, grazing 

pressure) may induce stronger variation of rP/R. In this case, the impact on NPP needs to be re-

evaluated. 

The investigation of the third parameter, i.e. iron limitation, was very challenging. Working in 

an iron free environment is a tricky task, not only because iron is everywhere, but also because 

algae with limited iron supply are very difficult to cultivate and grow much more slowly than 

those in rich media. For this reason, only rP/R in Chaetoceros sp. was measured, with highly 

interesting preliminary results. Chaetoceros sp. cells showed a very efficient acclimation to iron 

limitation by decreasing their respiratory losses. This compensates for the inevitable limitations 

of photosynthesis and the ratio of photosynthesis to respiration did not change in response to 

iron-deplete conditions.  

In this thesis, it was attempted to measure the same parameters with P. antarctica, but either 

problems with iron contamination in iron limited cells, or too low signal-to-noise ratio, 

prevented successful results with this species. Differences in Chaetoceros and P. antarctica 

species under iron limitation were observed in a very recent study (Trimborn et al. 2019), but 

important information about respiration have not been reported yet. Therefore, further 

experiments with other important SO species, like P. antarctica, are necessary to understand 

the species-specificity of these effects.  

Nonentheless, at least with Chaetoceros sp., we proved our third hypothesis, namely: 

3. P/R ratio remains constant under iron-limiting conditions 

For the first time, a combination of chlorophyll a fluorescence, O2 evolution and particulate 

organic carbon production measurements were used to understand the effect of low iron 

availability on the usage of photosynthetic electrons in cell metabolism and finally in carbon 

production in Chaetoceros sp. More studies are needed to infer the influence of P/R ratio on 

NPP in dependence on iron availability. 
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