17 research outputs found

    Coherent effects in double-barrier ferromagnet/superconductor/ferromagnet junctions

    Full text link
    Coherent quantum transport in ferromagnet/superconductor/ferromagnet (FSF) double-barrier junctions is studied. Analytic expressions for charge and spin conductance spectra are derived for the general case of insulating interfaces (from metallic to tunnel limit), the Fermi velocity mismatch, and for parallel (P) and antiparallel (AP) alignment of the electrode magnetizations. We focus on two characteristic features of finite size and coherency: subgap electronic transport, and oscillations of the differential conductance. Periodic vanishing of the Andreev reflection at the energies of geometrical resonances above the superconducting gap is a striking consequence of the quasiparticle interference. In contrast with the case of incoherent transport, a non-trivial spin-polarization without the excess spin accumulation is found for the AP alignment.Comment: 12 pages, 5 figure

    Spin-polarized currents in superconducting films

    Full text link
    We present a microscopic theory of coherent quantum transport through a superconducting film between two ferromagnetic electrodes. The scattering problem is solved for the general case of ferromagnet/superconductor/ferromagnet (FSF) double-barrier junction, including the interface transparency from metallic to tunnel limit, and the Fermi velocity mismatch. Charge and spin conductance spectra of FSF junctions are calculated for parallel (P) and antiparallel (AP) alignment of the electrode magnetization. Limiting cases of nonmagnetic normal-metal electrodes (NSN) and of incoherent transport are also presented. We focus on two characteristic features of finite size and coherency: subgap tunneling of electrons, and oscillations of the differential conductance. Periodic vanishing of the Andreev reflection at the energies of geometrical resonances above the superconducting gap is a striking consequence of the quasiparticle interference. Also, the non-trivial spin-polarization of the current is found for FSF junctions in AP alignment. This is in contrast with the incoherent transport, where the unpolarized current is accompanied by excess spin accumulation and destruction of superconductivity. Application to spectroscopic measurements of the superconducting gap and the Fermi velocity is also discussed.Comment: 11 pages, 11 figure

    Risks in Commodity and Currency Markets

    No full text
    This thesis analyzes market risk factors in commodity and currency markets. It focuses on the impact of extreme events on the prices of financial products traded in these markets, and on the overall market risk faced by the investors. The first chapter develops a simple two-factor jump-diffusion model for valuation of contingent claims on commodities in order to investigate the pricing implications of shocks that are exogenous to this market. The second chapter analyzes the nature and pricing implications of the abrupt changes in exchange rates, as well as the ability of these changes to explain the shapes of option-implied volatility "smiles". Finally, the third chapter employs the notion that key results of the univariate extreme value theory can be applied separately to the principal components of ARMA-GARCH residuals of a multivariate return series. The proposed approach yields more precise Value at Risk forecasts than conventional multivariate methods, while maintaining the same efficiency.El objetivo de esta tesis es analizar los factores del riesgo del mercado de las materias primas y las divisas. Está centrada en el impacto de los eventos extremos tanto en los precios de los productos financieros como en el riesgo total de mercado al cual se enfrentan los inversores. En el primer capítulo se introduce un modelo simple de difusión y saltos (jump-diffusion) con dos factores para la valuación de activos contingentes sobre las materias primas, con el objetivo de investigar las implicaciones de shocks en los precios que son exógenos a este mercado. En el segundo capítulo se analiza la naturaleza e implicaciones para la valuación de los saltos en los tipos de cambio, así como la capacidad de éstos para explicar las formas de sonrisa en la volatilidad implicada. Por último, en el tercer capítulo se utiliza la idea de que los resultados principales de la Teoria de Valores Extremos univariada se pueden aplicar por separado a los componentes principales de los residuos de un modelo ARMA-GARCH de series multivariadas de retorno. El enfoque propuesto produce pronósticos de Value at Risk más precisos que los convencionales métodos multivariados, manteniendo la misma eficiencia

    Effects of female gonadal hormones and LPS on depressive-like behavior in rats

    Get PDF
    Considerable evidence shows an association of depression with the immune system and emphasizes the importance of gender in the etiology of the disease and the response to inflammatory stimuli. We examined the influence of immune-challenged systems on depressive-like behavior in female rats in the context of gonadal hormones. We used a neuroinflammatory model of depression elicited by lipopolysaccharide (LPS) administration on naive and ovariectomized (OVX) female rats, and examined the effects of estradiol (E2) and/or progesterone (P4) replacement therapy on animal behavior, as assessed by the forced swimming test (FST). We found that LPS and OVX increase immobility in the FST, while LPS also decreased body weight in naive female rats. Further, even though P4 application alone showed beneficial effects on the behavioral profile (it reduced immobility and increased climbing), supplementation of both hormones (E2 and P4) together to OVX rats failed to do so. When OVX rats were exposed to LPS-induced immune challenge, neither hormone individually nor their combination had any effect on immobility, however, their joint supplementation increased climbing behavior. In conclusion, our study confirmed that both LPS and OVX induced depressive-like behavior in female rats. Furthermore, our results potentiate P4 supplementation in relieving the depressive-like symptomatology in OVX rats, most likely through fine-tuning of different neurotransmitter systems. In the context of an activated immune system, the application of E2 and/or P4 does not provide any advantageous effects on depressive-like behavior

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s
    corecore