32 research outputs found

    Virulence factors contributing to invasive activities of Serratia grimesii and Serratia proteamaculans

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Previously, we have shown that facultative pathogens Serratia grimesii and Serratia proteamaculans are capable to invade eukaryotic cells provided that they synthesize intracellular metalloprotease grimelysin or protealysin, respectively (Bozhokina et al. in Cell Biol Int 35(2):111–118, 2011). Noninvasive Escherichia coli transformed with grimelysin or protealysin gene became invasive, indicating that the protease is a virulence factor. Here we elucidated involvement of other virulence factors in the invasion of S. grimesii and S. proteamaculans. Under similar experimental conditions, the amount of S. proteamaculans internalized within human carcinoma HeLa cells was fivefold higher than that of S. grimesii. In accord with this, in S. proteamaculans, high activities of pore-forming hemolysin ShlA and extracellular metalloprotease serralysin were detected. In S. grimesii, activity of toxin ShlA was not detected, and the serralysin activity of the bacterial growth medium was very low. We also show that iron depletion strongly enhanced invasive activity of S. proteamaculans, increasing activities of hemolysin ShlA and serralysin, but did not affect S. grimesii properties. These results show that the invasive activity of S. proteamaculans is maintained, along with protealysin, by hemolysin and serralysin. On the other hand, grimelysin is so far the only known invasion factor of S.grimesii

    The Genome-Wide Analysis of Carcinoembryonic Antigen Signaling by Colorectal Cancer Cells Using RNA Sequencing

    Get PDF
    Сarcinoembryonic antigen (CEA, CEACAM5, CD66) is a promoter of metastasis in epithelial cancers that is widely used as a prognostic clinical marker of metastasis. The aim of this study is to identify the network of genes that are associated with CEA-induced colorectal cancer liver metastasis. We compared the genome-wide transcriptomic profiles of CEA positive (MIP101 clone 8) and CEA negative (MIP 101) colorectal cancer cell lines with different metastatic potential in vivo. The CEA-producing cells displayed quantitative changes in the level of expression for 100 genes (over-expressed or down-regulated). They were confirmed by quantitative RT-PCR. The KEGG pathway analysis identified 4 significantly enriched pathways: cytokine-cytokine receptor interaction, MAPK signaling pathway, TGF-beta signaling pathway and pyrimidine metabolism. Our results suggest that CEA production by colorectal cancer cells triggers colorectal cancer progression by inducing the epithelial- mesenchymal transition, increasing tumor cell invasiveness into the surrounding tissues and suppressing stress and apoptotic signaling. The novel gene expression distinctions establish the relationships between the existing cancer markers and implicate new potential biomarkers for colorectal cancer hepatic metastasis

    Peculiarities of Proteus mirabilis extracellular metalloproteinase biosynthesis

    Get PDF
    © 2015, Pleiades Publishing, Inc. Biosynthesis of metalloproteinase by the Proteus mirabilis 5127-1 strain on different media and the influence of glucose and urea on biosynthesis were studied. It was found that the P. mirabilis 5127-1 bacteria secretes metalloproteinase in the medium in two isoforms (52 and 50 kDa). It was established that proteinase synthesis is completely suppressed during the growth of bacteria on synthetic media, as well as in the presence of glucose in the LB medium. It was demonstrated that addition of urea in the medium results in an increase of the culture productivity in the proteinase synthesis. Maximal culture productivity in the proteinase synthesis was found in the medium with natural urine. During the growth of bacteria on artificial urine, proteinase appeared in the medium only after 12 hours of growth as a single isoform

    Bacterial Outer Membrane Protein OmpX Regulates β1 Integrin and Epidermal Growth Factor Receptor (EGFR) Involved in Invasion of M-HeLa Cells by <i>Serratia proteamaculans</i>

    No full text
    Opportunistic pathogen Serratia proteamaculans are able to penetrate the eukaryotic cells. The penetration rate can be regulated by bacterial surface protein OmpX. OmpX family proteins are able to bind to host cell surface to the epidermal growth factor receptor (EGFR) and the extracellular matrix protein fibronectin, whose receptors are in return the α5 β1 integrins. Here we elucidated the involvement of these host cell proteins in S. proteamaculans invasion. We have shown that, despite the absence of fibronectin contribution to S. proteamaculans invasion, β1 integrin was directly involved in invasion of M-HeLa cells. Herewith β1 integrin was not the only receptor that determines sensitivity of host cells to bacterial invasion. Signal transfer from EGFR was also involved in the penetration of these bacteria into M-HeLa cells. However, M-HeLa cells have not been characterized by large number of these receptors. It turned out that S. proteamaculans attachment to the host cell surface resulted in an increment of EGFR and β1 integrin genes expression. Such gene expression increment also caused Escherichia coli attachment, transformed with a plasmid encoding OmpX from S. proteamaculans. Thus, an OmpX binding to the host cell surface caused an increase in the EGFR and β1 integrin expression involved in S. proteamaculans invasion

    Bacterial Actin-Specific Endoproteases Grimelysin and Protealysin as Virulence Factors Contributing to the Invasive Activities of Serratia

    No full text
    The article reviews the discovery, properties and functional activities of new bacterial enzymes, proteases grimelysin (ECP 32) of Serratia grimesii and protealysin of Serratia proteamaculans, characterized by both a highly specific &ldquo;actinase&rdquo; activity and their ability to stimulate bacterial invasion. Grimelysin cleaves the only polypeptide bond Gly42-Val43 in actin. This bond is not cleaved by any other proteases and leads to a reversible loss of actin polymerization. Similar properties were characteristic for another bacterial protease, protealysin. These properties made grimelysin and protealysin a unique tool to study the functional properties of actin. Furthermore, bacteria Serratia grimesii and Serratia proteamaculans, producing grimelysin and protealysin, invade eukaryotic cells, and the recombinant Escherichia coli expressing the grimelysin or protealysins gene become invasive. Participation of the cellular c-Src and RhoA/ROCK signaling pathways in the invasion of eukaryotic cells by S. grimesii was shown, and involvement of E-cadherin in the invasion has been suggested. Moreover, membrane vesicles produced by S. grimesii were found to contain grimelysin, penetrate into eukaryotic cells and increase the invasion of bacteria into eukaryotic cells. These data indicate that the protease is a virulence factor, and actin can be a target for the protease upon its translocation into the host cell

    Virulence factors contributing to invasive activities of Serratia grimesii and Serratia proteamaculans

    No full text
    © 2015, Springer-Verlag Berlin Heidelberg. Previously, we have shown that facultative pathogens Serratia grimesii and Serratia proteamaculans are capable to invade eukaryotic cells provided that they synthesize intracellular metalloprotease grimelysin or protealysin, respectively (Bozhokina et al. in Cell Biol Int 35(2):111–118, 2011). Noninvasive Escherichia coli transformed with grimelysin or protealysin gene became invasive, indicating that the protease is a virulence factor. Here we elucidated involvement of other virulence factors in the invasion of S. grimesii and S. proteamaculans. Under similar experimental conditions, the amount of S. proteamaculans internalized within human carcinoma HeLa cells was fivefold higher than that of S. grimesii. In accord with this, in S. proteamaculans, high activities of pore-forming hemolysin ShlA and extracellular metalloprotease serralysin were detected. In S. grimesii, activity of toxin ShlA was not detected, and the serralysin activity of the bacterial growth medium was very low. We also show that iron depletion strongly enhanced invasive activity of S. proteamaculans, increasing activities of hemolysin ShlA and serralysin, but did not affect S. grimesii properties. These results show that the invasive activity of S. proteamaculans is maintained, along with protealysin, by hemolysin and serralysin. On the other hand, grimelysin is so far the only known invasion factor of S.grimesii

    Tolerance to a contact allergen in the mouse does not require antibody. Abstr.

    No full text
    © 2015, Springer-Verlag Berlin Heidelberg. Previously, we have shown that facultative pathogens Serratia grimesii and Serratia proteamaculans are capable to invade eukaryotic cells provided that they synthesize intracellular metalloprotease grimelysin or protealysin, respectively (Bozhokina et al. in Cell Biol Int 35(2):111–118, 2011). Noninvasive Escherichia coli transformed with grimelysin or protealysin gene became invasive, indicating that the protease is a virulence factor. Here we elucidated involvement of other virulence factors in the invasion of S. grimesii and S. proteamaculans. Under similar experimental conditions, the amount of S. proteamaculans internalized within human carcinoma HeLa cells was fivefold higher than that of S. grimesii. In accord with this, in S. proteamaculans, high activities of pore-forming hemolysin ShlA and extracellular metalloprotease serralysin were detected. In S. grimesii, activity of toxin ShlA was not detected, and the serralysin activity of the bacterial growth medium was very low. We also show that iron depletion strongly enhanced invasive activity of S. proteamaculans, increasing activities of hemolysin ShlA and serralysin, but did not affect S. grimesii properties. These results show that the invasive activity of S. proteamaculans is maintained, along with protealysin, by hemolysin and serralysin. On the other hand, grimelysin is so far the only known invasion factor of S.grimesii

    Peculiarities of Proteus mirabilis extracellular metalloproteinase biosynthesis

    No full text
    © 2015, Pleiades Publishing, Inc. Biosynthesis of metalloproteinase by the Proteus mirabilis 5127-1 strain on different media and the influence of glucose and urea on biosynthesis were studied. It was found that the P. mirabilis 5127-1 bacteria secretes metalloproteinase in the medium in two isoforms (52 and 50 kDa). It was established that proteinase synthesis is completely suppressed during the growth of bacteria on synthetic media, as well as in the presence of glucose in the LB medium. It was demonstrated that addition of urea in the medium results in an increase of the culture productivity in the proteinase synthesis. Maximal culture productivity in the proteinase synthesis was found in the medium with natural urine. During the growth of bacteria on artificial urine, proteinase appeared in the medium only after 12 hours of growth as a single isoform

    Peculiarities of Proteus mirabilis extracellular metalloproteinase biosynthesis

    No full text
    © 2015, Pleiades Publishing, Inc. Biosynthesis of metalloproteinase by the Proteus mirabilis 5127-1 strain on different media and the influence of glucose and urea on biosynthesis were studied. It was found that the P. mirabilis 5127-1 bacteria secretes metalloproteinase in the medium in two isoforms (52 and 50 kDa). It was established that proteinase synthesis is completely suppressed during the growth of bacteria on synthetic media, as well as in the presence of glucose in the LB medium. It was demonstrated that addition of urea in the medium results in an increase of the culture productivity in the proteinase synthesis. Maximal culture productivity in the proteinase synthesis was found in the medium with natural urine. During the growth of bacteria on artificial urine, proteinase appeared in the medium only after 12 hours of growth as a single isoform
    corecore