473 research outputs found

    Reconstruction of photon statistics using low performance photon counters

    Get PDF
    The output of a photodetector consists of a current pulse whose charge has the statistical distribution of the actual photon numbers convolved with a Bernoulli distribution. Photodetectors are characterized by a nonunit quantum efficiency, i.e. not all the photons lead to a charge, and by a finite resolution, i.e. a different number of detected photons leads to a discriminable values of the charge only up to a maximum value. We present a detailed comparison, based on Monte Carlo simulated experiments and real data, among the performances of detectors with different upper limits of counting capability. In our scheme the inversion of Bernoulli convolution is performed by maximum-likelihood methods assisted by measurements taken at different quantum efficiencies. We show that detectors that are only able to discriminate between zero, one and more than one detected photons are generally enough to provide a reliable reconstruction of the photon statistics for single-peaked distributions, while detectors with higher resolution limits do not lead to further improvements. In addition, we demonstrate that, for semiclassical states, even on/off detectors are enough to provide a good reconstruction. Finally, we show that a reliable reconstruction of multi-peaked distributions requires either higher quantum efficiency or better capability in discriminating high number of detected photons.Comment: 8 pages, 3 figure

    Discovery and Follow-up of Rotating Radio Transients with the Green Bank and LOFAR Telescopes

    Get PDF
    We have discovered 21 Rotating Radio Transients (RRATs) in data from the Green Bank Telescope (GBT) 350-MHz Drift-scan and the Green Bank North Celestial Cap pulsar surveys using a new candidate sifting algorithm. RRATs are pulsars with sporadic emission that are detected through their bright single pulses rather than Fourier domain searches. We have developed {\tt RRATtrap}, a single-pulse sifting algorithm that can be integrated into pulsar survey data analysis pipelines in order to find RRATs and Fast Radio Bursts. We have conducted follow-up observations of our newly discovered sources at several radio frequencies using the GBT and Low Frequency Array (LOFAR), yielding improved positions and measurements of their periods, dispersion measures, and burst rates, as well as phase-coherent timing solutions for four of them. The new RRATs have dispersion measures (DMs) ranging from 15 to 97 pc cm−3^{-3}, periods of 240 ms to 3.4 s, and estimated burst rates of 20 to 400 pulses hr−1^{-1} at 350 MHz. We use this new sample of RRATs to perform statistical comparisons between RRATs and canonical pulsars in order to shed light on the relationship between the two populations. We find that the DM and spatial distributions of the RRATs agree with those of the pulsars found in the same survey. We find evidence that slower pulsars (i.e. P>200P>200 ms) are preferentially more likely to emit bright single pulses than are faster pulsars (P<200P<200 ms), although this conclusion is tentative. Our results are consistent with the proposed link between RRATs, transient pulsars, and canonical pulsars as sources in various parts of the pulse activity spectrum.Comment: 18 pages, 13 figures, 5 tables, published in Ap

    Student Satisfaction and Performance in an Online Teacher Certification Program

    Get PDF
    The article presents a study which demonstrates the effectiveness of an online post baccalaureate teacher certification program developed by a Wisconsin university. The case method approach employing multiple methods and multiple data sources were used to investigate the degree to which pre-service teachers were prepared to teach. It was concluded that the study supports online delivery as an effective means of teacher preparation, but it was limited in the number of students followed into their first year of teaching

    2012 Annual Report - Advanced Biomedical Information Technology Core

    Get PDF
    This material is based upon work supported in part by the following funding agencies and grant awards: • Lilly Endowment, for its support of the Indiana Genomics Initiative (INGEN) – 2000; Indiana Metabolomics and Cytomics Initiative (METACyt); Indiana Pervasive Computing Research (IPCRES) initiative and Pervasive Technology Institute (1999 and 2008 respectively) • National Science Foundation under grants 01116050 MRI: Creation of the AVIDD Data Facility: A Distributed Facility for Managing, Analyzing and Visualizing Instrument-Driven Data (Michael A. McRobbie, PI); 0521433 MRI: Acquisition of a High-Speed, High Capacity Storage System to Support Scientific Computing: The Data Capacitor (Craig A. Stewart, PI); 0521433 ABI Development: National Center for Genome Analysis Support (Craig A. Stewart, PI) • National Institutes of Health NIAAA awards U24 AA014818-01 (Craig A. Stewart, PI) and U24 AA014818-04 (William K. Barnett, PI) Informatics Core for the Collaborative Initiative on Fetal Alcohol Spectrum Disorder • Subcontracts through the following NIH grant awards: 5P40RR024928 (Kenneth Cornetta, PI), 2U01AA014809 (Tatiana Foroud, PI), 1DP2OD007363-01 (Alexander Niculescu, PI), UL1RR025761-01 (Anantha Shekhar, PI), 3UL1RR025761-04S2 (Anantha Shekhar, PI), and 3UL1RR025761-04S3 (Anantha Shekhar, PI) • Funding from the general funds of Indiana University Any opinions expressed in this document are those of the authors and do not necessarily reflect the views of the funding agencies above

    A millisecond pulsar in a stellar triple system

    Full text link
    Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses, and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, B1620-26 (with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multi-wavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar (1.4378(13) Msun, where Msun is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15) Msun and 0.4101(3) Msun), as well as the inclinations of the orbits (both approximately 39.2 degrees). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.Comment: 17 pages, 3 figures, 1 table. Published online by Nature on 5 Jan 2014. Extremely minor differences with published version may exis

    The Green Bank Northern Celestial Cap Pulsar Survey - I: Survey Description, Data Analysis, and Initial Results

    Get PDF
    We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts (FRBs), at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4,096 channels every 81.92 μs\mu s. This survey will cover the entire sky visible to the Green Bank Telescope (δ>−40∘\delta > -40^\circ, or 82% of the sky) and outside of the Galactic Plane will be sensitive enough to detect slow pulsars and low dispersion measure (<<30 pc cm−3\mathrm{pc\,cm^{-3}}) millisecond pulsars (MSPs) with a 0.08 duty cycle down to 1.1 mJy. For pulsars with a spectral index of −-1.6, we will be 2.5 times more sensitive than previous and ongoing surveys over much of our survey region. Here we describe the survey, the data analysis pipeline, initial discovery parameters for 62 pulsars, and timing solutions for 5 new pulsars. PSR J0214++5222 is an MSP in a long-period (512 days) orbit and has an optical counterpart identified in archival data. PSR J0636++5129 is an MSP in a very short-period (96 minutes) orbit with a very low mass companion (8 MJM_\mathrm{J}). PSR J0645++5158 is an isolated MSP with a timing residual RMS of 500 ns and has been added to pulsar timing array experiments. PSR J1434++7257 is an isolated, intermediate-period pulsar that has been partially recycled. PSR J1816++4510 is an eclipsing MSP in a short-period orbit (8.7 hours) and may have recently completed its spin-up phase.Comment: 18 pages, 10 figures, 5 tables, accepted by Ap

    Quantum polarization tomography of bright squeezed light

    Full text link
    We reconstruct the polarization sector of a bright polarization squeezed beam starting from a complete set of Stokes measurements. Given the symmetry that underlies the polarization structure of quantum fields, we use the unique SU(2) Wigner distribution to represent states. In the limit of localized and bright states, the Wigner function can be approximated by an inverse three-dimensional Radon transform. We compare this direct reconstruction with the results of a maximum likelihood estimation, finding an excellent agreement.Comment: 15 pages, 5 figures. Contribution to New Journal of Physics, Focus Issue on Quantum Tomography. Comments welcom

    The Effects of Dietary Linoleic Acid and Hydrophilic Antioxidants on Basal, Peak, and Sustained Metabolism in Flight‐trained European Starlings

    Get PDF
    Dietary micronutrients have the ability to strongly influence animal physiology and ecology. For songbirds, dietary polyunsaturated fatty acids (PUFAs) and antioxidants are hypothesized to be particularly important micronutrients because of their influence on an individual\u27s capacity for aerobic metabolism and recovery from extended bouts of exercise. However, the influence of specific fatty acids and hydrophilic antioxidants on whole‐animal performance remains largely untested. We used diet manipulations to directly test the effects of dietary PUFA, specifically linoleic acid (18:2n6), and anthocyanins, a hydrophilic antioxidant, on basal metabolic rate (BMR), peak metabolic rate (PMR), and rates of fat catabolism, lean catabolism, and energy expenditure during sustained flight in a wind tunnel in European starlings (Sturnus vulgaris). BMR, PMR, energy expenditure, and fat metabolism decreased and lean catabolism increased over the course of the experiment in birds fed a high (32%) 18:2n6 diet, while birds fed a low (13%) 18:2n6 diet exhibited the reverse pattern. Additionally, energy expenditure, fat catabolism, and flight duration were all subject to diet‐specific effects of whole‐body fat content. Dietary antioxidants and diet‐related differences in tissue fatty acid composition were not directly related to any measure of whole‐animal performance. Together, these results suggest that the effect of dietary 18:2n6 on performance was most likely the result of the signaling properties of 18:2n6. This implies that dietary PUFA influence the energetic capabilities of songbirds and could strongly influence songbird ecology, given their availability in terrestrial systems

    The Green Bank Northern Celestial Cap Pulsar Survey II: The Discovery and Timing of Ten Pulsars

    Full text link
    We present timing solutions for ten pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program in analysis of drift-scan data. Following discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930−-2301, a pulsar with nulling fraction lower limit of ∼\sim30\% and nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557−-2948 is an isolated, 44 \rm{ms} pulsar that has been partially recycled and is likely a former member of a binary system which was disrupted by a second supernova. The paucity of such so-called `disrupted binary pulsars' (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 \rm{ms} pulsar in a 44 day orbit with a low mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.Comment: 9 pages, 5 figure

    The Green Bank North Celestial Cap Pulsar Survey. IV: Four New Timing Solutions

    Get PDF
    We present timing solutions for four pulsars discovered in the Green Bank Northern Celestial Cap (GBNCC) survey. All four pulsars are isolated with spin periods between 0.26 \,s and 1.84 \,s. PSR J0038−-2501 has a 0.26 \,s period and a period derivative of 7.6×10−19 s s−1{7.6} \times {10}^{-19}\,{\rm s\,s}^{-1}, which is unusually low for isolated pulsars with similar periods. This low period derivative may be simply an extreme value for an isolated pulsar or it could indicate an unusual evolution path for PSR J0038−-2501, such as a disrupted recycled pulsar (DRP) from a binary system or an orphaned central compact object (CCO). Correcting the observed spin-down rate for the Shklovskii effect suggests that this pulsar may have an unusually low space velocity, which is consistent with expectations for DRPs. There is no X-ray emission detected from PSR J0038−-2501 in an archival swift observation, which suggests that it is not a young orphaned CCO. The high dispersion measure of PSR J1949+3426 suggests a distance of 12.3 \,kpc. This distance indicates that PSR J1949+3426 is among the most distant 7% of Galactic field pulsars, and is one of the most luminous pulsars.Comment: 7 pages, 5 figure
    • …
    corecore