58 research outputs found

    Physics with the KLOE-2 experiment at the upgraded DAϕ\phiNE

    Get PDF
    Investigation at a ϕ\phi--factory can shed light on several debated issues in particle physics. We discuss: i) recent theoretical development and experimental progress in kaon physics relevant for the Standard Model tests in the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum Mechanics from time evolution of entangled kaon states, iii) the interest for improving on the present measurements of non-leptonic and radiative decays of kaons and eta/eta^\prime mesons, iv) the contribution to understand the nature of light scalar mesons, and v) the opportunity to search for narrow di-lepton resonances suggested by recent models proposing a hidden dark-matter sector. We also report on the e+ee^+ e^- physics in the continuum with the measurements of (multi)hadronic cross sections and the study of gamma gamma processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added reference to section

    ATLAS detector and physics performance: Technical Design Report, 1

    Get PDF

    Effect of AP102, a subtype 2 and 5 specific somatostatin analog, on glucose metabolism in rats.

    No full text
    Somatostatin analogs are widely used to treat conditions associated with hormonal hypersecretion such as acromegaly and metastatic neuroendocrine tumors. First generation somatostatin analogs, such as octreotide and lanreotide, have high affinity for somatostatin receptor subtype 2 (SSTR2), but have incomplete efficacy in many patients. Pasireotide targets multiple SSTRs, having the highest affinity for SSTR5, but causes hyperglycemia and diabetes mellitus in preclinical and clinical studies. AP102 is a new somatostatin analogs with high affinity at both SSTR2 and SSTR5. We aimed to characterize the effects of AP102 vs. pasireotide on random and dynamic glucose levels, glucoregulatory hormone concentrations and growth axis measures in healthy Sprague-Dawley rats. Three doses of each compound were evaluated under acute conditions (1, 10, and 30 µg/kg s.c.), and two doses during a chronic (4-week) infusion (3 and 10 µg/kg/h s.c.). Neither acute nor chronic AP102 administration altered blood glucose concentrations or dynamic responses following an intraperitoneal glucose tolerance test. In contrast, acute and chronic pasireotide dosing increased random and post-intraperitoneal glucose tolerance test blood glucose measures, compared to vehicle-treated controls. Both AP102 and pasireotide acutely suppressed growth hormone levels, although insulin-like growth factor-1 and somatic growth was suppressed to a greater extent with pasireotide. AP102 is a new dual SSTR2/SSTR5-specific somatostatin analog that acutely reduces growth hormone but does not cause hyperglycemia during acute or chronic administration in a healthy rat model. Further studies in diabetic animals and in humans are necessary to determine the potential utility of AP102 in the clinical setting
    corecore