12,878 research outputs found

    Blackbody Radiation and the Scaling Symmetry of Relativistic Classical Electron Theory with Classical Electromagnetic Zero-Point Radiation

    Full text link
    It is pointed out that relativistic classical electron theory with classical electromagnetic zero-point radiation has a scaling symmetry which is suitable for understanding the equilibrium behavior of classical thermal radiation at a spectrum other than the Rayleigh-Jeans spectrum. In relativistic classical electron theory, the masses of the particles are the only scale-giving parameters associated with mechanics while the action-angle variables are scale invariant. The theory thus separates the interaction of the action variables of matter and radiation from the scale-giving parameters. Classical zero-point radiation is invariant under scattering by the charged particles of relativistic classical electron theory. The basic ideas of the matter -radiation interaction are illustrated in a simple relativistic classical electromagnetic example.Comment: 18 page

    Shareholder Voting and the Chicago School: Now Is the Winter of Our Discontent

    Get PDF
    We have simulated the effect of different parameters in location-aware information sharing policies for crowd-based information exchange systems. The purpose of this simulation was to find out which parameters improved the upload time, battery life and success rate for nodes trying to upload a large file under bad conditions. To test the effect of these parameters on a larger scale, we simulated an area where a large number of nodes were moving around. Our test results showed that nodes greatly improved their battery life and the upload time by limiting the number of nodes they send data to, rather than sharing data with all nodes within reach. However, sending the oldest collected data performed very bad in regards of battery life time and had a relatively high amount of nodes that did not manage to upload their file. We concluded that nodes should not share their data with all available nodes at all times, and be restrictive in the amount of data they share with other nodes to conserve battery

    Stability of Sasaki-extremal metrics under complex deformations

    Get PDF
    We consider the stability of Sasaki-extremal metrics under deformations of the complex structure on the Reeb foliation. Given such a deformation preserving the action of a compact subgroup of the automorphism group of a Sasaki-extremal structure, a sufficient condition is given involving the nondegeneracy of the relative Futaki invariant for the deformations to contain Sasaki-extremal structures. Deformations of Sasaki-Einstein metrics are also considered, where it suffices that the deformation preserve a maximal torus. As an application, new families of Sasaki-Einstein and Sasaki-extremal metrics are given on deformations of well known 3-Sasaki 7-manifolds.Comment: Added the obstruction to the existence of Sasaki structures under transversal complex deformations. 30 pages and 1 figur

    Some Heuristic Semiclassical Derivations of the Planck Length, the Hawking Effect and the Unruh Effect

    Full text link
    The formulae for Planck length, Hawking temperature and Unruh-Davies temperature are derived by using only laws of classical physics together with the Heisenberg principle. Besides, it is shown how the Hawking relation can be deduced from the Unruh relation by means of the principle of equivalence; the deep link between Hawking effect and Unruh effect is in this way clarified.Comment: LaTex file, 6 pages, no figure

    Mapping RT-LOTOS specifications into Time Petri Nets

    Get PDF
    RT-LOTOS is a timed process algebra which enables compact and abstract specification of real-time systems. This paper proposes and illustrates a structural translation of RT-LOTOS terms into behaviorally equivalent (timed bisimilar) finite Time Petri nets. It is therefore possible to apply Time Petri nets verification techniques to the profit of RT-LOTOS. Our approach has been implemented in RTL2TPN, a prototype tool which takes as input an RT-LOTOS specification and outputs a TPN. The latter is verified using TINA, a TPN analyzer developed by LAAS-CNRS. The toolkit made of RTL2TPN and TINA has been positively benchmarked against previously developed RT-LOTOS verification tool

    Absence of Metastable States in Strained Monatomic Cubic Crystals

    Full text link
    A tetragonal (Bain path) distortion of a metal with an fcc (bcc) ground state will initially cause an increase in energy, but at some point along the Bain path the energy will again decrease until a local minimum is reached. Using a combination of parametrized tight-binding and first-principles LAPW calculations we show that this local minimum is unstable with respect to an elastic distortion, except in the rare case that the minimum is at the bcc (fcc) point on the Bain path. This shows that body-centered tetragonal phases of these materials, which have been seen in epitaxially grown thin films, must be stabilized by the substrate and cannot be free-standing films.Comment: 7 pages, 5 postscript figures, REVTEX, submitted to Phys. Rev.

    Improved Parallel Rabin-Karp Algorithm Using Compute Unified Device Architecture

    Full text link
    String matching algorithms are among one of the most widely used algorithms in computer science. Traditional string matching algorithms efficiency of underlaying string matching algorithm will greatly increase the efficiency of any application. In recent years, Graphics processing units are emerged as highly parallel processor. They out perform best of the central processing units in scientific computation power. By combining recent advancement in graphics processing units with string matching algorithms will allows to speed up process of string matching. In this paper we proposed modified parallel version of Rabin-Karp algorithm using graphics processing unit. Based on that, result of CPU as well as parallel GPU implementations are compared for evaluating effect of varying number of threads, cores, file size as well as pattern size.Comment: Information and Communication Technology for Intelligent Systems (ICTIS 2017

    Gravity and the Quantum Vacuum Inertia Hypothesis

    Full text link
    In previous work it has been shown that the electromagnetic quantum vacuum, or electromagnetic zero-point field, makes a contribution to the inertial reaction force on an accelerated object. We show that the result for inertial mass can be extended to passive gravitational mass. As a consequence the weak equivalence principle, which equates inertial to passive gravitational mass, appears to be explainable. This in turn leads to a straightforward derivation of the classical Newtonian gravitational force. We call the inertia and gravitation connection with the vacuum fields the quantum vacuum inertia hypothesis. To date only the electromagnetic field has been considered. It remains to extend the hypothesis to the effects of the vacuum fields of the other interactions. We propose an idealized experiment involving a cavity resonator which, in principle, would test the hypothesis for the simple case in which only electromagnetic interactions are involved. This test also suggests a basis for the free parameter η(ν)\eta(\nu) which we have previously defined to parametrize the interaction between charge and the electromagnetic zero-point field contributing to the inertial mass of a particle or object.Comment: 18 pages, no figures. Annalen der Physik, 2005, in press. New version reformatte
    corecore