3,021 research outputs found

    Signal transduction mechanisms involved in S100A4-induced activation of the transcription factor NF-κB

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The metastasis-promoting protein S100A4 activates the transcription factor NF-κB through the classical NF-κB activation pathway. The upstream signal transduction mechanisms leading to increased NF-κB activity are, however, incompletely characterized.</p> <p>Methods</p> <p>The human osteosarcoma cell line II-11b was stimulated with recombinant S100A4 in the presence or absence of inhibitors of common signal transduction pathways, and NF-κB activity was examined using a luciferase-based reporter assay and phosphorylation of IκBα. mRNA expression was analyzed by real-time RT-PCR, protein expression was examined by Western blotting and IKK activity was measured using an in vitro kinase assay. The role of upstream kinases and the cell surface receptor RAGE was investigated by overexpression of dominant negative proteins and by siRNA transfection.</p> <p>Results</p> <p>The Ser/Thr kinase inhibitors H-7 and staurosporine inhibited S100A4-induced IκBα phosphorylation and subsequent NF-κB activation. The protein tyrosine kinase inhibitor genistein and the phospholipase C inhibitor compound 48/80 had a partial inhibitory effect on IκBα phosphorylation, whereas inhibitors of protein kinase C, G-protein coupled receptors and PI 3-kinases had no effect on the level of phosphorylation. Interestingly, S100A4 treatment induced activating phosphorylations of IKKα/β, but neither H-7 nor staurosporine was able to significantly inhibit IKK activation. Dominant negative MEKK1 or NIK did not inhibit S100A4-induced NF-κB activity, and S100A4 stimulation did not influence AKT phosphorylation. Furthermore, diminished expression of the putative S100 protein receptor RAGE did not affect the observed phosphorylation of IκBα.</p> <p>Conclusions</p> <p>S100A4 activates NF-κB by inducing phosphorylation of IKKα/β, leading to increased IκBα phosphorylation. The Ser/Thr kinase inhibitors H-7 and staurosporine attenuated S100A4-induced NF-κB activation and inhibited IKK-mediated phosphorylation of IκBα. S100A4-induced NF-κB activation was independent of the putative S100 protein receptor RAGE and the Ser/Thr kinases MEKK1, NIK and AKT. These findings lead to increased understanding of S100A4 signaling, which may contribute to the identification of novel targets for anti-metastatic therapy.</p

    Approximate square-root-time relaxation in glass-forming liquids

    Get PDF
    We present data for the dielectric relaxation of 43 glass-forming organic liquids, showing that the primary (alpha) relaxation is often close to square-root-time relaxation. The better an inverse power-law description of the high-frequency loss applies, the more accurately is square-root-time relaxation obeyed. These findings suggest that square-root-time relaxation is generic to the alpha process, once a common view, but since long believed to be incorrect. Only liquids with very large dielectric losses deviate from this picture by having consistently narrower loss peaks. As a further challenge to the prevailing opinion, we find that liquids with accurate square-root-time relaxation cover a wide range of fragilities

    Evidence for the evolutionary steps leading to mecA-mediated ß-lactam resistance in staphylococci

    Get PDF
    The epidemiologically most important mechanism of antibiotic resistance in Staphylococcus aureus is associated with mecA–an acquired gene encoding an extra penicillin-binding protein (PBP2a) with low affinity to virtually all β-lactams. The introduction of mecA into the S. aureus chromosome has led to the emergence of methicillin-resistant S. aureus (MRSA) pandemics, responsible for high rates of mortality worldwide. Nonetheless, little is known regarding the origin and evolution of mecA. Different mecA homologues have been identified in species belonging to the Staphylococcus sciuri group representing the most primitive staphylococci. In this study we aimed to identify evolutionary steps linking these mecA precursors to the β-lactam resistance gene mecA and the resistance phenotype. We sequenced genomes of 106 S. sciuri, S. vitulinus and S. fleurettii strains and determined their oxacillin susceptibility profiles. Single-nucleotide polymorphism (SNP) analysis of the core genome was performed to assess the genetic relatedness of the isolates. Phylogenetic analysis of the mecA gene homologues and promoters was achieved through nucleotide/amino acid sequence alignments and mutation rates were estimated using a Bayesian analysis. Furthermore, the predicted structure of mecA homologue-encoded PBPs of oxacillin-susceptible and -resistant strains were compared. We showed for the first time that oxacillin resistance in the S. sciuri group has emerged multiple times and by a variety of different mechanisms. Development of resistance occurred through several steps including structural diversification of the non-binding domain of native PBPs; changes in the promoters of mecA homologues; acquisition of SCCmec and adaptation of the bacterial genetic background. Moreover, our results suggest that it was exposure to β-lactams in human-created environments that has driven evolution of native PBPs towards a resistance determinant. The evolution of β-lactam resistance in staphylococci highlights the numerous resources available to bacteria to adapt to the selective pressure of antibiotics

    MSI PARENTERAL PARECOXIB FOLLOWED BY ORAL VALDECOXIB AFTER MAJOR GENERAL SURGERY REDUCES OPIOID CONSUMPTION AND OPIOID-RELATED SYMPTOMS

    Get PDF

    EMMPRIN is associated with S100A4 and predicts patient outcome in colorectal cancer

    Get PDF
    BACKGROUND: Proteolytic enzymes and their regulators have important biological roles in colorectal cancer by stimulating invasion and metastasis, which makes these factors attractive as potential prognostic biomarkers. METHODS: The expression of extracellular matrix metalloproteinase inducer (EMMPRIN) was characterised using immunohistochemistry in primary tumours from a cohort of 277 prospectively recruited colorectal cancer patients, and associations with expression of S100A4, clinicopathological parameters and patient outcome were investigated. RESULTS: One hundred and ninety-eight samples (72%) displayed positive membrane staining of the tumour cells, whereas 10 cases (4%) were borderline positive. EMMPRIN expression was associated with shorter metastasis-free, disease-specific and overall survival in both univariate and multivariate analyses. The prognostic impact was largely confined to TNM stage III, and EMMPRIN-negative stage III patients had an excellent prognosis. Furthermore, EMMPRIN was significantly associated with expression of S100A4, and the combined expression of these biomarkers conferred an even poorer prognosis. However, there was no evidence of direct regulation between the two proteins in the colorectal cancer cell lines HCT116 and SW620 in siRNA knockdown experiments. CONCLUSION: EMMPRIN is a promising prognostic biomarker in colorectal cancer, and our findings suggest that it could be used in the selection of stage III patients for adjuvant therapy
    corecore