2,726 research outputs found

    A single-domain spectral method for black hole puncture data

    Full text link
    We calculate puncture initial data corresponding to both single and binary black hole solutions of the constraint equations by means of a pseudo-spectral method applied in a single spatial domain. Introducing appropriate coordinates, these methods exhibit rapid convergence of the conformal factor and lead to highly accurate solutions. As an application we investigate small mass ratios of binary black holes and compare these with the corresponding test mass limit that we obtain through a semi-analytical limiting procedure. In particular, we compare the binding energy of puncture data in this limit with that of a test particle in the Schwarzschild spacetime and find that it deviates by 50% from the Schwarzschild result at the innermost stable circular orbit of Schwarzschild, if the ADM mass at each puncture is used to define the local black hole masses.Comment: 13 pages, 6 figures; published version with one important change, see Fig. 4 and the corresponding changes to the tex

    As agĂȘncias nacionais de notĂ­cias na turbulenta era da internet

    Get PDF
    Escrevendo recentemente, em 2000  (Boyd-Barrett, 2000), em continuidade a uma apresentação, em 1999, em Atenas, para a Aliança Europeia de AssociaçÔes de Imprensa (mais tarde renomeada Aliança Europeia de AgĂȘncias de NotĂ­cias), assinalei razĂ”es para uma preocupação sobre o papel e o futuro das agĂȘncias de notĂ­cias.  [M1]Esta menção pode sair jĂĄ que hĂĄ a referĂȘncia do escrito recente

    Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution

    Get PDF
    Metaiodobenzylguanidine (MIBG) is an enzymatically stable synthetic analog of norepinephrine that when radiolabled with diagnostic ((123)I) or therapeutic ((131)I) isotopes has been shown to concentrate highly in sympathetically innervated tissues such as the heart and neuroendocrine tumors that possesses high levels of norepinephrine transporter (NET). As the transport of MIBG by NET is a saturable event, the specific activity of the preparation may have dramatic effects on both the efficacy and safety of the radiodiagnostic/radiotherapeutic. Using a solid labeling approach (Ultratrace), noncarrier-added radiolabeled MIBG can be efficiently produced. In this study, specific activities of >1200 mCi/micromol for (123)I and >1600 mCi/micromol for (131)I have been achieved. A series of studies were performed to assess the impact of cold carrier MIBG on the tissue distribution of (123/131)I-MIBG in the conscious rat and on cardiovascular parameters in the conscious instrumented dog. The present series of studies demonstrated that the carrier-free Ultratrace MIBG radiolabeled with either (123)I or (131)I exhibited similar tissue distribution to the carrier-added radiolabeled MIBG in all nontarget tissues. In tissues that express NETs, the higher the specific activity of the preparation the greater will be the radiopharmaceutical uptake. This was reflected by greater efficacy in the mouse neuroblastoma SK-N-BE(2c) xenograft model and less appreciable cardiovascular side-effects in dogs when the high-specific-activity radiopharmaceutical was used. The increased uptake and retention of Ultratrace (123/131)I-MIBG may translate into a superior diagnostic and therapeutic potential. Lastly, care must be taken when administering therapeutic doses of the current carrier-added (131)I-MIBG because of its potential to cause adverse cardiovascular side-effects, nausea, and vomiting

    A symmetry analyser for non-destructive Bell state detection using EIT

    Full text link
    We describe a method to project photonic two-qubit states onto the symmetric and antisymmetric subspaces of their Hilbert space. This device utilizes an ancillary coherent state, together with a weak cross-Kerr non-linearity, generated, for example, by electromagnetically induced transparency. The symmetry analyzer is non-destructive, and works for small values of the cross-Kerr coupling. Furthermore, this device can be used to construct a non-destructive Bell state detector.Comment: Final published for

    Circular orbits and spin in black-hole initial data

    Get PDF
    The construction of initial data for black-hole binaries usually involves the choice of free parameters that define the spins of the black holes and essentially the eccentricity of the orbit. Such parameters must be chosen carefully to yield initial data with the desired physical properties. In this paper, we examine these choices in detail for the quasiequilibrium method coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we compare two independent criteria for choosing the orbital frequency, the "Komar-mass condition" and the "effective-potential method," and find excellent agreement. Second, we implement quasi-local measures of the spin of the individual holes, calibrate these with corotating binaries, and revisit the construction of non-spinning black hole binaries. Higher-order effects, beyond those considered in earlier work, turn out to be important. Without those, supposedly non-spinning black holes have appreciable quasi-local spin; furthermore, the Komar-mass condition and effective potential method agree only when these higher-order effects are taken into account. We compute a new sequence of quasi-circular orbits for non-spinning black-hole binaries, and determine the innermost stable circular orbit of this sequence.Comment: 24 pages, 17 figures, accepted for publication in Physical Review D, revtex4; Fixed error in computing proper separation and updated figures and tables accordingly, added reference to Sec. IV.A, fixed minor error in Sec. IV.B, added new data to Tables IV and V, fixed 1 reference, fixed error in Eq. (A7b), included minor changes from PRD editin

    Testing axioms for Quantum Mechanics on Probabilistic toy-theories

    Full text link
    In Ref. [1] one of the authors proposed postulates for axiomatizing Quantum Mechanics as a "fair operational framework", namely regarding the theory as a set of rules that allow the experimenter to predict future events on the basis of suitable tests, having local control and low experimental complexity. In addition to causality, the following postulates have been considered: PFAITH (existence of a pure preparationally faithful state), and FAITHE (existence of a faithful effect). These postulates have exhibited an unexpected theoretical power, excluding all known nonquantum probabilistic theories. Later in Ref. [2] in addition to causality and PFAITH, postulate LDISCR (local discriminability) and PURIFY (purifiability of all states) have been considered, narrowing the probabilistic theory to something very close to Quantum Mechanics. In the present paper we test the above postulates on some nonquantum probabilistic models. The first model, "the two-box world" is an extension of the Popescu-Rohrlich model, which achieves the greatest violation of the CHSH inequality compatible with the no-signaling principle. The second model "the two-clock world" is actually a full class of models, all having a disk as convex set of states for the local system. One of them corresponds to the "the two-rebit world", namely qubits with real Hilbert space. The third model--"the spin-factor"--is a sort of n-dimensional generalization of the clock. Finally the last model is "the classical probabilistic theory". We see how each model violates some of the proposed postulates, when and how teleportation can be achieved, and we analyze other interesting connections between these postulate violations, along with deep relations between the local and the non-local structures of the probabilistic theory.Comment: Submitted to QIP Special Issue on Foundations of Quantum Informatio

    Media Theory, Public Relevance and the Propaganda Model

    Get PDF
    Since its initial formulation in 1988, the Herman-Chomsky Propaganda Model (PM) has become one of the most widely tested models of media performance in the social sciences. This is largely due to the combined efforts of a loose group of international scholars as well as an increasing number of students who have produced studies in the US, UK, Canadian, Australian, Japanese, Chinese, German, and Dutch contexts, amongst others. Yet, the PM has also been marginalised in media and communication scholarship, largely due to the fact that the PM‟s radical scholarly outlook challenges the liberal and conservative underpinnings of mainstream schools of thought in capitalist democracies. This paper brings together, for the first time, leading scholars to discuss important questions pertaining to the PM‟s origins, public relevance, connections to other approaches within Communication Studies and Cultural Studies, applicability in the social media age, as well as impact and influence. The paper aligns with the 30th anniversary of the PM and the publication of the collected volume, The Propaganda Model Today, and highlights the PM‟s continued relevance at a time of unprecedented corporate consolidation of the media, extreme levels of inequality and class conflict as well as emergence of new forms of authoritarianism
    • 

    corecore