159 research outputs found

    Simplified Energy Landscape for Modularity Using Total Variation

    Get PDF
    Networks capture pairwise interactions between entities and are frequently used in applications such as social networks, food networks, and protein interaction networks, to name a few. Communities, cohesive groups of nodes, often form in these applications, and identifying them gives insight into the overall organization of the network. One common quality function used to identify community structure is modularity. In Hu et al. [SIAM J. App. Math., 73(6), 2013], it was shown that modularity optimization is equivalent to minimizing a particular nonconvex total variation (TV) based functional over a discrete domain. They solve this problem, assuming the number of communities is known, using a Merriman, Bence, Osher (MBO) scheme. We show that modularity optimization is equivalent to minimizing a convex TV-based functional over a discrete domain, again, assuming the number of communities is known. Furthermore, we show that modularity has no convex relaxation satisfying certain natural conditions. We therefore, find a manageable non-convex approximation using a Ginzburg Landau functional, which provably converges to the correct energy in the limit of a certain parameter. We then derive an MBO algorithm with fewer hand-tuned parameters than in Hu et al. and which is 7 times faster at solving the associated diffusion equation due to the fact that the underlying discretization is unconditionally stable. Our numerical tests include a hyperspectral video whose associated graph has 2.9x10^7 edges, which is roughly 37 times larger than was handled in the paper of Hu et al.Comment: 25 pages, 3 figures, 3 tables, submitted to SIAM J. App. Mat

    Sociophonetic perspectives on stylistic diversity in speech research

    Get PDF

    Presbyterian Imitation Practices in Zachary Boyd’s Nebuchadnezzars Fierie Furnace

    Get PDF
    The university administrator, preacher and poet Zachary Boyd (1585–1653) relied heavily on epithets and similes borrowed from Josuah Sylvester's poetry when composing his scriptural versifications Zion's Flowers(c. 1640?). The composition of Boyd's adaptation of Daniel 3, Nebuchadnezzars Fierie Furnace, provides an unusually lucid example of the reading and imitation practices of a mid-seventeenth-century Scottish Presbyterian in the years preceding civil war. This article begins by re-considering a manuscript transcription of Fierie Furnace held at the British Library previously described as an anonymous playtext from the early 1610s, then establishes the nature of Boyd's reliance on Sylvester by analyzing holograph manuscripts held at Glasgow University Library, a sermon Boyd wrote on the same theme, and the copy of Sylvester's Devine Weekes, and Workes that Boyd probably used.Arts and Humanities Research Counci

    Stochastic Block Models are a Discrete Surface Tension

    Full text link
    Networks, which represent agents and interactions between them, arise in myriad applications throughout the sciences, engineering, and even the humanities. To understand large-scale structure in a network, a common task is to cluster a network's nodes into sets called "communities", such that there are dense connections within communities but sparse connections between them. A popular and statistically principled method to perform such clustering is to use a family of generative models known as stochastic block models (SBMs). In this paper, we show that maximum likelihood estimation in an SBM is a network analog of a well-known continuum surface-tension problem that arises from an application in metallurgy. To illustrate the utility of this relationship, we implement network analogs of three surface-tension algorithms, with which we successfully recover planted community structure in synthetic networks and which yield fascinating insights on empirical networks that we construct from hyperspectral videos.Comment: to appear in Journal of Nonlinear Scienc

    A metric on directed graphs and Markov chains based on hitting probabilities

    Full text link
    The shortest-path, commute time, and diffusion distances on undirected graphs have been widely employed in applications such as dimensionality reduction, link prediction, and trip planning. Increasingly, there is interest in using asymmetric structure of data derived from Markov chains and directed graphs, but few metrics are specifically adapted to this task. We introduce a metric on the state space of any ergodic, finite-state, time-homogeneous Markov chain and, in particular, on any Markov chain derived from a directed graph. Our construction is based on hitting probabilities, with nearness in the metric space related to the transfer of random walkers from one node to another at stationarity. Notably, our metric is insensitive to shortest and average walk distances, thus giving new information compared to existing metrics. We use possible degeneracies in the metric to develop an interesting structural theory of directed graphs and explore a related quotienting procedure. Our metric can be computed in O(n3)O(n^3) time, where nn is the number of states, and in examples we scale up to n=10,000n=10,000 nodes and ≈38M\approx 38M edges on a desktop computer. In several examples, we explore the nature of the metric, compare it to alternative methods, and demonstrate its utility for weak recovery of community structure in dense graphs, visualization, structure recovering, dynamics exploration, and multiscale cluster detection.Comment: 26 pages, 9 figures, for associated code, visit https://github.com/zboyd2/hitting_probabilities_metric, accepted at SIAM J. Math. Data Sc

    Effect of microstructure on the internal hydriding behavior of uranium

    Get PDF
    Please click Additional Files below to see the full abstrac
    • 

    corecore