12,715 research outputs found

    Thermocapillary effects in driven dewetting and self-assembly of pulsed laser-irradiated metallic films

    Get PDF
    In this paper the lubrication-type dynamical model is developed of a molten, pulsed laser-irradiated metallic film. The heat transfer problem that incorporates the absorbed heat from a single beam or interfering beams is solved analytically. Using this temperature field, we derive the 3D long-wave evolution PDE for the film height. To get insights into dynamics of dewetting, we study the 2D version of the evolution equation by means of a linear stability analysis and by numerical simulations. The stabilizing and destabilizing effects of various system parameters, such as the peak laser beam intensity, the film optical thickness, the Biot and Marangoni numbers, etc. are elucidated. It is observed that the film stability is promoted for such parameters variations that increase the heat production in the film. In the numerical simulations the impacts of different irradiation modes are investigated. In particular, we obtain that in the interference heating mode the spatially periodic irradiation results in a spatially periodic film rupture with the same, or nearly equal period. The 2D model qualitatively reproduces the results of the experimental observations of a film stability and spatial ordering of a re-solidified nanostructures

    Controlling induced coherence for quantum imaging

    Full text link
    Induced coherence in parametric down-conversion between two coherently pumped nonlinear crystals that share a common idler mode can be used as an imaging technique. Based on the interference between the two signal modes of the crystals, an image can be reconstructed. By obtaining an expression for the interference pattern that is valid in both the low- and the high-gain regimes of parametric down-conversion, we show how the coherence of the light emitted by the two crystals can be controlled. With our comprehensive analysis we provide deeper insight into recent discussions about the application of induced coherence to imaging in different regimes. Moreover, we propose a scheme for optimizing the visibility of the interference pattern so that it directly corresponds to the degree of coherence of the light generated in the two crystals. We find that this scheme leads in the high-gain regime to a visibility arbitrarily close to unity.Comment: 9 pages, 4 figure

    Witnessed entanglement and the geometric measure of quantum discord

    Full text link
    We establish relations between geometric quantum discord and entanglement quantifiers obtained by means of optimal witness operators. In particular, we prove a relation between negativity and geometric discord in the Hilbert-Schmidt norm, which is slightly different from a previous conjectured one [Phys. Rev. A 84, 052110 (2011)].We also show that, redefining the geometric discord with the trace norm, better bounds can be obtained. We illustrate our results numerically.Comment: 8 pages + 3 figures. Revised version with erratum for PRA 86, 024302 (2012). Simplified proof that discord is bounded by entanglement in any nor

    Quantum memory for non-stationary light fields based on controlled reversible inhomogeneous broadening

    Get PDF
    We propose a new method for efficient storage and recall of non-stationary light fields, e.g. single photon time-bin qubits, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening. We briefly discuss experimental realizations of our proposal.Comment: 4 page

    Bounds on Heavy-to-Heavy Mesonic Form Factors

    Get PDF
    We provide upper and lower bounds on the form factors for B -> D, D^* by utilizing inclusive heavy quark effective theory sum rules. These bounds are calculated to leading order in Lambda_QCD/m_Q and alpha_s. The O(alpha_s^2 beta_0) corrections to the bounds at zero recoil are also presented. We compare our bounds with some of the form factor models used in the literature. All the models we investigated failed to fall within the bounds for the combination of form factors (omega^2 - 1)/(4 omega)|omega h_{A2}+h_{A3}|^2.Comment: 27 pages, 10 figure

    Atom trapping with a thin magnetic film

    Full text link
    We have created a 87^{87}Rb Bose-Einstein condensate in a magnetic trapping potential produced by a hard disk platter written with a periodic pattern. Cold atoms were loaded from an optical dipole trap and then cooled to BEC on the surface with radiofrequency evaporation. Fragmentation of the atomic cloud due to imperfections in the magnetic structure was observed at distances closer than 40 ÎĽ\mum from the surface. Attempts to use the disk as an atom mirror showed dispersive effects after reflection.Comment: 4 pages, 5 figure

    Pulsed squeezed light: simultaneous squeezing of multiple modes

    Full text link
    We analyze the spectral properties of squeezed light produced by means of pulsed, single-pass degenerate parametric down-conversion. The multimode output of this process can be decomposed into characteristic modes undergoing independent squeezing evolution akin to the Schmidt decomposition of the biphoton spectrum. The main features of this decomposition can be understood using a simple analytical model developed in the perturbative regime. In the strong pumping regime, for which the perturbative approach is not valid, we present a numerical analysis, specializing to the case of one-dimensional propagation in a beta-barium borate waveguide. Characterization of the squeezing modes provides us with an insight necessary for optimizing homodyne detection of squeezing. For a weak parametric process, efficient squeezing is found in a broad range of local oscillator modes, whereas the intense generation regime places much more stringent conditions on the local oscillator. We point out that without meeting these conditions, the detected squeezing can actually diminish with the increasing pumping strength, and we expose physical reasons behind this inefficiency

    Laser beam filamentation in fractal aggregates

    Full text link
    We investigate filamentation of a cw laser beam in soft matter such as colloidal suspensions and fractal gels. The process, driven by electrostriction, is strongly affected by material properties, which are taken into account via the static structure factor, and have impact on the statistics of the light filaments.Comment: 4 pages, 5 figures. Revised version with corrected figure 5. To be published in Phys. Rev. Let

    State-dependent, addressable subwavelength lattices with cold atoms

    Full text link
    We discuss how adiabatic potentials can be used to create addressable lattices on a subwavelength scale, which can be used as a tool for local operations and readout within a lattice substructure, while taking advantage of the faster timescales and higher energy and temperature scales determined by the shorter lattice spacing. For alkaline-earth-like atoms with non-zero nuclear spin, these potentials can be made state dependent, for which we give specific examples with 171^{171}Yb atoms. We discuss in detail the limitations in generating the lattice potentials, in particular non-adiabatic losses, and show that the loss rates can always be made exponentially small by increasing the laser power.Comment: replaced with the published version. 23 pages, 11 figure
    • …
    corecore