20,645 research outputs found

    Optically mediated nonlinear quantum optomechanics

    Full text link
    We consider theoretically the optomechanical interaction of several mechanical modes with a single quantized cavity field mode for linear and quadratic coupling. We focus specifically on situations where the optical dissipation is the dominant source of damping, in which case the optical field can be adiabatically eliminated, resulting in effective multimode interactions between the mechanical modes. In the case of linear coupling, the coherent contribution to the interaction can be exploited e.g. in quantum state swapping protocols, while the incoherent part leads to significant modifications of cold damping or amplification from the single-mode situation. Quadratic coupling can result in a wealth of possible effective interactions including the analogs of second-harmonic generation and four-wave mixing in nonlinear optics, with specific forms depending sensitively on the sign of the coupling. The cavity-mediated mechanical interaction of two modes is investigated in two limiting cases, the resolved sideband and the Doppler regime. As an illustrative application of the formal analysis we discuss in some detail a two-mode system where a Bose-Einstein condensate is optomechanically linearly coupled to the moving end mirror of a Fabry-P\'erot cavity.Comment: 11 pages, 8 figure

    Numerical time propagation of quantum systems in radiation fields

    Full text link
    Atoms, molecules or excitonic quasiparticles, for which excitations are induced by external radiation fields and energy is dissipated through radiative decay, are examples of driven open quantum systems. We explain the use of commutator-free exponential time-propagators for the numerical solution of the associated Schr\"odinger or master equations with a time-dependent Hamilton operator. These time-propagators are based on the Magnus series but avoid the computation of commutators, which makes them suitable for the efficient propagation of systems with a large number of degrees of freedom. We present an optimized fourth order propagator and demonstrate its efficiency in comparison to the direct Runge-Kutta computation. As an illustrative example we consider the parametrically driven dissipative Dicke model, for which we calculate the periodic steady state and the optical emission spectrum.Comment: 23 pages, 11 figure

    Polarization squeezing of light by single passage through an atomic vapor

    Full text link
    We have studied relative-intensity fluctuations for a variable set of orthogonal elliptic polarization components of a linearly polarized laser beam traversing a resonant 87^{87}Rb vapor cell. Significant polarization squeezing at the threshold level (-3dB) required for the implementation of several continuous variables quantum protocols was observed. The extreme simplicity of the setup, based on standard polarization components, makes it particularly convenient for quantum information applications.Comment: Revised version. Minor changes. four pages, three figure

    Capacity of nonlinear bosonic systems

    Full text link
    We analyze the role of nonlinear Hamiltonians in bosonic channels. We show that the information capacity as a function of the channel energy is increased with respect to the corresponding linear case, although only when the energy used for driving the nonlinearity is not considered as part of the energetic cost and when dispersive effects are negligible.Comment: 6 pages, 3 figure

    On designing observers for time-delay systems with nonlinear disturbances

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2002 Taylor & Francis LtdIn this paper, the observer design problem is studied for a class of time-delay nonlinear systems. The system under consideration is subject to delayed state and non-linear disturbances. The time-delay is allowed to be time-varying, and the non-linearities are assumed to satisfy global Lipschitz conditions. The problem addressed is the design of state observers such that, for the admissible time-delay as well as non-linear disturbances, the dynamics of the observation error is globally exponentially stable. An effective algebraic matrix inequality approach is developed to solve the non-linear observer design problem. Specifically, some conditions for the existence of the desired observers are derived, and an explicit expression of desired observers is given in terms of some free parameters. A simulation example is included to illustrate the practical applicability of the proposed theory.The work of Z. Wang was supported in part by the University of Kaiserslautern of Germany and the Alexander von Humboldt Foundation of Germany

    Towards Einstein-Podolsky-Rosen quantum channel multiplexing

    Full text link
    A single broadband squeezed field constitutes a quantum communication resource that is sufficient for the realization of a large number N of quantum channels based on distributed Einstein-Podolsky-Rosen (EPR) entangled states. Each channel can serve as a resource for, e.g. independent quantum key distribution or teleportation protocols. N-fold channel multiplexing can be realized by accessing 2N squeezed modes at different Fourier frequencies. We report on the experimental implementation of the N=1 case through the interference of two squeezed states, extracted from a single broadband squeezed field, and demonstrate all techniques required for multiplexing (N>1). Quantum channel frequency multiplexing can be used to optimize the exploitation of a broadband squeezed field in a quantum information task. For instance, it is useful if the bandwidth of the squeezed field is larger than the bandwidth of the homodyne detectors. This is currently a typical situation in many experiments with squeezed and two-mode squeezed entangled light.Comment: 4 pages, 4 figures. In the new version we cite recent experimental work bei Mehmet et al., arxiv0909.5386, in order to clarify the motivation of our work and its possible applicatio

    Reducing Electricity Demand Charge for Data Centers with Partial Execution

    Full text link
    Data centers consume a large amount of energy and incur substantial electricity cost. In this paper, we study the familiar problem of reducing data center energy cost with two new perspectives. First, we find, through an empirical study of contracts from electric utilities powering Google data centers, that demand charge per kW for the maximum power used is a major component of the total cost. Second, many services such as Web search tolerate partial execution of the requests because the response quality is a concave function of processing time. Data from Microsoft Bing search engine confirms this observation. We propose a simple idea of using partial execution to reduce the peak power demand and energy cost of data centers. We systematically study the problem of scheduling partial execution with stringent SLAs on response quality. For a single data center, we derive an optimal algorithm to solve the workload scheduling problem. In the case of multiple geo-distributed data centers, the demand of each data center is controlled by the request routing algorithm, which makes the problem much more involved. We decouple the two aspects, and develop a distributed optimization algorithm to solve the large-scale request routing problem. Trace-driven simulations show that partial execution reduces cost by 3%−−10.5%3\%--10.5\% for one data center, and by 15.5%15.5\% for geo-distributed data centers together with request routing.Comment: 12 page

    Turbulence and Chaos in Anti-de-Sitter Gravity

    Full text link
    Due to the AdS/CFT correspondence the question of instability of Anti-de-Sitter spacetimes sits in the intersection of mathematical and numerical relativity, string theory, field theory and condensed matter physics. In this essay we revisit that important question emphasizing the power of spectral methods and highlighting the effectiveness of standard techniques for studying nonlinear dynamical systems. In particular we display explicitly how the problem can be modeled as a system on nonlinearly coupled harmonic oscillators. We highlight some of the many open questions that stem from this result and point out that a full understanding will necessarily required the interdisciplinary cooperation of various communities.Comment: 6 pages, 12 figures. Essay awarded honorable mention in the Gravity Research Foundation essay competition 201
    • …
    corecore