2,237 research outputs found

    Competition between the Modulation Instability and Stimulated Brillouin Scattering in a Broadband Slow Light Device

    Full text link
    We observe competition between the modulation instability (MI) and stimulated Brillouin scattering (SBS) in a 9.2-GHz broadband SBS slow light device, in which a standard 20-km-long single-mode LEAF fibre is used as the SBS medium. We find that MI is dominant and depletes most of the pump power when we use an intense pump beam at ~1.55 {\mu}m, where the LEAF fibre is anomalously dispersive. The dominance of the MI in the LEAF-fibre-based system suppresses the SBS gain, degrading the SBS slow light delay and limiting the SBS gain-bandwidth to 126 dB \cdot GHz. In a dispersion-shifted highly nonlinear fibre, the SBS slow light delay is improved due to the suppression of the MI, resulting in a gain-bandwidth product of 344 dB \cdot GHz, limited by our available pump power of 0.82 W

    Casimir micro-sphere diclusters and three-body effects in fluids

    Full text link
    Our previous article [Phys. Rev. Lett. 104, 060401 (2010)] predicted that Casimir forces induced by the material-dispersion properties of certain dielectrics can give rise to stable configurations of objects. This phenomenon was illustrated via a dicluster configuration of non-touching objects consisting of two spheres immersed in a fluid and suspended against gravity above a plate. Here, we examine these predictions from the perspective of a practical experiment and consider the influence of non-additive, three-body, and nonzero-temperature effects on the stability of the two spheres. We conclude that the presence of Brownian motion reduces the set of experimentally realizable silicon/teflon spherical diclusters to those consisting of layered micro-spheres, such as the hollow- core (spherical shells) considered here.Comment: 11 pages, 9 figure

    Higher-order nonlinear modes and bifurcation phenomena due to degenerate parametric four-wave mixing

    Get PDF
    We demonstrate that weak parametric interaction of a fundamental beam with its third harmonic field in Kerr media gives rise to a rich variety of families of non-fundamental (multi-humped) solitary waves. Making a comprehensive comparison between bifurcation phenomena for these families in bulk media and planar waveguides, we discover two novel types of soliton bifurcations and other interesting findings. The later includes (i) multi-humped solitary waves without even or odd symmetry and (ii) multi-humped solitary waves with large separation between their humps which, however, may not be viewed as bound states of several distinct one-humped solitons.Comment: 9 pages, 17 figures, submitted to Phys. Rev.

    Newly Developed and Validated Eosinophilic Esophagitis Histology Scoring System and Evidence that it Outperforms Peak Eosinophil Count for Disease Diagnosis and Monitoring

    Get PDF
    Eosinophilic esophagitis is diagnosed by symptoms, and at least 15 intraepithelial eosinophils per high power field in an esophageal biopsy. Other pathologic features have not been emphasized. We developed a histology scoring system for esophageal biopsies that evaluates eight features: eosinophil density, basal zone hyperplasia, eosinophil abscesses, eosinophil surface layering, dilated intercellular spaces, surface epithelial alteration, dyskeratotic epithelial cells and lamina propria fibrosis. Severity (grade) and extent (stage) of abnormalities were scored using a 4 point scale (0 normal; 3 maximum change). Reliability was demonstrated by strong to moderate agreement among 3 pathologists who scored biopsies independently (p≤0.008). Several features were often abnormal in 201 biopsies (101 distal, 100 proximal) from 104 subjects (34 untreated, 167 treated). Median grade and stage scores were significantly higher in untreated compared to treated subjects (p≤0.0062). Grade scores for features independent of eosinophil counts were significantly higher in biopsies from untreated compared to treated subjects (basal zone hyperplasia p≤0.024 and dilated intercellular spaces p≤0.005), and were strongly correlated (r-square\u3e0.67). Principal components analysis identified 3 principal components that explained 78.2% of the variation in the features. In logistic regression models, 2 principal components more closely associated with treatment status than log distal peak eosinophil count (r-square 17, area under the curve 77.8 vs r-square 9, area under the curve 69.8). In summary, the eosinophilic esophagitis histology scoring system provides a method to objectively assess histologic changes in the esophagus beyond eosinophil number. Importantly, it discriminates treated from untreated patients, uses features commonly found in such biopsies, and is utilizable by pathologists after minimal training. These data provide rationales and a method to evaluate esophageal biopsies for features in addition to peak eosinophil count

    Dispersive Approach to Semileptonic Form-Factors in Heavy-to-Light Meson Decays

    Get PDF
    We study the semileptonic decays of heavy mesons into light pseudoscalars by making use of dispersion relations. Constraints from heavy quark symmetry, chiral symmetry and perturbative QCD are implemented into a dispersive model for the form-factors. Large deviations from BB^*-pole dominance are observed in BπνB\to\pi\ell\nu. We discuss the model prediction for this mode and its possible impact on the extraction of Vub|V_{ub}|.Comment: 30 pages, including 5 Postcript figure

    Hybrid materials based on polyethylene and MCM-41 microparticles functionalized with silanes: catalytic aspects of in situ polymerization, crystalline features and mechanical properties

    Get PDF
    New nanocomposites based on polyethylene have been prepared by in situ polymerization of ethylene in presence of mesoporous MCM-41. The polymerization reactions were performed using a zirconocene catalyst either under homogenous conditions or supported onto mesoporous MCM-41 particles, which are synthesized and decorated post-synthesis with two silanes before polymerization in order to promote an enhanced interfacial adhesion. The existence of polyethylene chains able to crystallize within the mesoporous channels in the resulting nanocomposites is figured out from the small endothermic process, located at around 80 C, on heating calorimetric experiments, in addition to the main melting endotherm. These results indicate that polyethylene macrochains can grow up during polymerization either outside or inside the MCM-41 channels, these keeping their regular hexagonal arrangements. Mechanical response is observed to be dependent on the content in mesoporous MCM-41 and on the crystalline features of polyethylene. Accordingly, stiffness increases and deformability decreases in the nanocomposites as much as MCM-41 content is enlarged and polyethylene amount within channels is raised. Ultimate mechanical performance improves with MCM-41 incorporation without varying the final processing temperature

    Aerosol meteorology of Maritime Continent for the 2012 7SEAS southwest monsoon intensive study - Part 2: Philippine receptor observations of fine-scale aerosol behavior

    Get PDF
    Abstract. The largest 7 Southeast Asian Studies (7SEAS) operations period within the Maritime Continent (MC) occurred in the August–September 2012 biomass burning season. Data included were observations aboard the M/Y Vasco, dispatched to the Palawan Archipelago and Sulu Sea of the Philippines for September 2012. At these locations, the Vasco observed MC smoke and pollution entering the southwest monsoon (SWM) monsoonal trough. Here we describe the research cruise findings and the finer-scale aerosol meteorology of this convectively active region. This 2012 cruise complemented a 2-week cruise in 2011 and was generally consistent with previous findings in terms of how smoke emission and transport related to monsoonal flows, tropical cyclones (TC), and the covariance between smoke transport events and the atmosphere's thermodynamic structure. Biomass burning plumes were usually mixed with significant amounts of anthropogenic pollution. Also key to aerosol behavior were squall lines and cold pools propagating across the South China Sea (SCS) and scavenging aerosol particles in their path. However, the 2012 cruise showed much higher modulation in aerosol frequency than its 2011 counterpart. Whereas in 2011 large synoptic-scale aerosol events transported high concentrations of smoke into the Philippines over days, in 2012 measured aerosol events exhibited a much shorter-term variation, sometimes only 3–12 h. Strong monsoonal flow reversals were also experienced in 2012. Nucleation events in cleaner and polluted conditions, as well as in urban plumes, were observed. Perhaps most interestingly, several cases of squall lines preceding major aerosol events were observed, as opposed to 2011 observations where these lines largely scavenged aerosol particles from the marine boundary layer. Combined, these observations indicate pockets of high and low particle counts that are not uncommon in the region. These perturbations are difficult to observe by satellite and very difficult to model. Indeed, the Navy Aerosol Analysis and Prediction System (NAAPS) simulations captured longer period aerosol events quite well but largely failed to capture the timing of high-frequency phenomena. Ultimately, the research findings of these cruises demonstrate the real world challenges of satellite-based missions, significant aerosol life cycle questions such as those the future Aerosol/Clouds/Ecosystems (ACE) will investigate, and the importance of small-scale phenomena such as sea breezes, squall lines, and nucleation events embedded within SWM patterns in dominating aerosol life cycle and potential relationships to clouds

    Microphysical Approach to Nonequilibrium Dynamics of Quantum Fields

    Get PDF
    We examine the nonequilibrium dynamics of a self-interacting λϕ4\lambda\phi^4 scalar field theory. Using a real time formulation of finite temperature field theory we derive, up to two loops and O(λ2)O(\lambda^2), the effective equation of motion describing the approach to equilibrium. We present a detailed analysis of the approximations used in order to obtain a Langevin-like equation of motion, in which the noise and dissipation terms associated with quantum fluctuations obey a fluctuation-dissipation relation. We show that, in general, the noise is colored (time-dependent) and multiplicative (couples nonlinearly to the field), even though it is still Gaussian distributed. The noise becomes white in the infinite temperature limit. We also address the effect of couplings to other fields, which we assume play the r\^ole of the thermal bath, in the effective equation of motion for ϕ\phi. In particular, we obtain the fluctuation and noise terms due to a quadratic coupling to another scalar field.Comment: 30 pages, LaTex (uses RevTex 3.0), DART-HEP-93/0

    Learning From Early Attempts to Generalize Darwinian Principles to Social Evolution

    Get PDF
    Copyright University of Hertfordshire & author.Evolutionary psychology places the human psyche in the context of evolution, and addresses the Darwinian processes involved, particularly at the level of genetic evolution. A logically separate and potentially complementary argument is to consider the application of Darwinian principles not only to genes but also to social entities and processes. This idea of extending Darwinian principles was suggested by Darwin himself. Attempts to do this appeared as early as the 1870s and proliferated until the early twentieth century. But such ideas remained dormant in the social sciences from the 1920s until after the Second World War. Some lessons can be learned from this earlier period, particularly concerning the problem of specifying the social units of selection or replication

    Predictions on BπlˉνlB \to \pi \bar{l} \nu_l, DπlˉνlD \to \pi \bar{l} \nu_l and DKlˉνlD\to K \bar{l} \nu_l from QCD Light-Cone Sum Rules

    Full text link
    The f+f^+ form factors of the BπB\to \pi, DπD\to \pi and DKD\to K transitions are calculated from QCD light-cone sum rules (LCSR) and used to predict the widths and differential distributions of the exclusive semileptonic decays BπlˉνlB\to \pi \bar{l}\nu_l, DπlˉνlD \to\pi \bar{l}\nu_l and DKlˉνlD \to K \bar{l}\nu_l, where l=e,μl=e,\mu. The current theoretical uncertainties are estimated. The LCSR results are found to agree with the results of lattice QCD calculations and with experimental data on exclusive semileptonic D decays. Comparison of the LCSR prediction on BπlˉνlB\to \pi \bar{l} \nu_l with the CLEO measurement yields a value of |V_{ub}| in agreement with other determinations.Comment: 24 pages, 12 figures, Latex, epsfig, some additional remarks on the two-pole parameterization, prediction on the BKB\to K form factor added, version to appear in Phys. Rev.
    corecore