5,020 research outputs found

    The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars

    Get PDF
    We are producing a 1:200K geologic map of Tooting crater, Mars. This work has shown that an incredible amount of information can be gleaned from mapping at even larger scales (1:10K 1:25K) using CTX and HiRISE data. We have produced two new science papers (Morris et al., 2010; Mouginis-Mark and Boyce, 2010) from this mapping, and additional science questions continue to arise from our on-going analysis of Tooting crater: 1) What was the interplay of impact melt and volatile-rich sediments that, presumably, were created during the impact? Kieffer and Simonds [1980] predicted that melt would have been destroyed during impacts on Mars because of the volatiles present within the target we seek to understand if this is indeed the case at Tooting crater. We have identified pitted and fractured terrain that formed during crater modification, but the timing of the formation of these materials in different parts of the crater remains to be resolved. Stratigraphic relationships between these units and the central peak may reveal deformation features as well as overlapping relationships. 2) Morris et al. [2010] identified several lobate flows on the inner and outer walls of Tooting crater. It is not yet clear what the physical characteristics of the source areas of these flows really are; e.g., what are the sizes of the source areas, what elevations are they located at relative to the floor of the crater, are they interconnected, and are they on horizontal or tilted surfaces? 3) What were the details of dewatering of the inner wall of Tooting crater (Fig. 1)? We find evidence within Tooting crater of channels carved by water release, and the remobilization of sediment (which is inferred to have formed during the impact event). Sapping can be identified along the crest of unit 8 near the floor of the crater (Fig. 2a, 2b). This unit displays amphitheater-headed canyons that elsewhere on Mars are typically attributed to water leaking from the substrate [Laity and Malin, 1985; Malin and Edgett, 2000]

    A p21-Activated Kinase Is Required for Conidial Germination in Penicillium marneffei

    Get PDF
    Asexual spores (conidia) are the infectious propagules of many pathogenic fungi, and the capacity to sense the host environment and trigger conidial germination is a key pathogenicity determinant. Germination of conidia requires the de novo establishment of a polarised growth axis and consequent germ tube extension. The molecular mechanisms that control polarisation during germination are poorly understood. In the dimorphic human pathogenic fungus Penicillium marneffei, conidia germinate to produce one of two cell types that have very different fates in response to an environmental cue. At 25 °C, conidia germinate to produce the saprophytic cell type, septate, multinucleate hyphae that have the capacity to undergo asexual development. At 37 °C, conidia germinate to produce the pathogenic cell type, arthroconidiating hyphae that liberate uninucleate yeast cells. This study shows that the p21-activated kinase pakA is an essential component of the polarity establishment machinery during conidial germination and polarised growth of yeast cells at 37 °C but is not required for germination or polarised growth at 25 °C. Analysis shows that the heterotrimeric G protein α subunit GasC and the CDC42 orthologue CflA lie upstream of PakA for germination at both temperatures, while the Ras orthologue RasA only functions at 25 °C. These findings suggest that although some proteins that regulate the establishment of polarised growth in budding yeast are conserved in filamentous fungi, the circuitry and downstream effectors are differentially regulated to give rise to distinct cell types

    Bilateral symmetry breaking in a nonlinear Fabry-Perot cavity exhibiting optical tristability

    Full text link
    We show the existence of a region in the parameter space that defines the field dynamics in a Fabry-Perot cylindrical cavity, where three output stable stationary states of the light are possible for a given localized incident field. Two of these states do not preserve the bilateral (i.e. left-right) symmetry of the entire system. These broken-symmetry states are the high-transmission nonlinear modes of the system. We also discuss how to excite these states.Comment: 5 pages, 5 figure

    High Precision, High Spatial Resolution Analysis of Sulfur Isotopes by Laser Combustion of Natural Sulfide Minerals

    Get PDF
    Laser induced combustion provides a powerful new technique for sulfur isotope measurements in natural sulfides. A high power continuous laser, focused through a modified microscope system onto a sulfide mineral target, produces highly localized heating. The laser beam is focused to a spot 25 μm in diameter at the sample surface. In the presence of low pressure oxygen, temperatures at the centre of the spot are sufficiently high to produce localized oxidation. Resultant SO2 is transferred to a gas source isotope ratio mass spectrometer, where the 34S can be measured to a precision better than 0.25‰. Sulfur isotopes are fractionated during the combustion by an amount which is reproducible, mineral specific and favours the lighter isotopes. The system is calibrated for given sulphide minerals and specified operating conditions. Laser combustion analysis of sulfur isotopes in pyrite chimneys from the Silvermines ore deposit in Ireland, illustrates the benefits of 100 μm spatial resolution possible with this technique

    Formation of the giant Aynak copper deposit, Afghanistan: evidence from mineralogy, lithogeochemistry and sulphur isotopes

    Get PDF
    Aynak is the largest known copper deposit in Afghanistan, with indicated resources of 240 Mt grading 2.3% Cu placing it in the ‘giant’ category. Host rocks are Neoproterozoic metasediments comprising dolomitic marble, carbonaceous quartz schist and quartz-biotite-dolomite schist containing garnet, scapolite and apatite. Chalcopyrite and bornite dominate the hypogene ore with lesser pyrite, pyrrhotite, cobaltite and chalcocite, and rare sphalerite, molybdenite, uraninite and barite. Sulphides occur as bedding-parallel laminae, disseminations, metamorphic segregations and crosscutting veins. Sulphide δ34S ratios range –14.5 to +17.3‰ in bedded and disseminated sulphides (n = 34). This broad range favours biogenic reduction of seawater sulphate as a major source of sulphur, although thermochemical reduction processes are not precluded. The narrower δ34S range of –6 to +12.2‰ in vein and segregation sulphides (n = 21) suggests localized redistribution and partial homogenization during metamorphism. Geochemical associations suggest that Al, P, Ca, Ti and Fe were primary sedimentary constituents whereas Cu, Mg, S, Se, As, Co and Bi were introduced subsequently. We infer that Aynak originated as a shale- and carbonate-hosted stratabound replacement deposit, resembling orebodies of the Central African Copperbelt, although underlying red-beds are absent at Aynak and mafic volcanics were the probable copper source. These giant deposits formed worldwide in the Cryogenian probably due to marine enrichment in copper, magnesium and sulphate coincident with profuse basaltic volcanism and ocean oxidation

    Measurements of the stable carbon isotope composition of dissolved inorganic carbon in the northeastern Atlantic and Nordic Seas during summer 2012

    Get PDF
    The stable carbon isotope composition of dissolved inorganic carbon (δ13CDIC) in seawater was measured in a batch process for 552 samples collected during two cruises in the northeastern Atlantic and Nordic Seas from June to August 2012. One cruise was part of the UK Ocean Acidification research programme, and the other was a repeat hydrographic transect of the Extended Ellett Line. In combination with measurements made of other variables on these and other cruises, these data can be used to constrain the anthropogenic component of dissolved inorganic carbon (DIC) in the interior ocean, and to help to determine the influence of biological carbon uptake on surface ocean carbonate chemistry. The measurements have been processed, quality-controlled and submitted to an in-preparation global compilation of seawater δ13CDIC data, and are available from the British Oceanographic Data Centre. The observed δ13CDIC values fall in a range from −0.58 to +2.37 ‰, relative to the Vienna Pee Dee Belemnite standard. The mean of the absolute differences between samples collected in duplicate in the same container type during both cruises and measured consecutively is 0.10 ‰, which corresponds to a 1σ uncertainty of 0.09 ‰, and which is within the range reported by other published studies of this kind. A crossover analysis was performed with nearby historical δ13CDIC data, indicating that any systematic offsets between our measurements and previously published results are negligible. Data doi:10.5285/09760a3a-c2b5-250b-e053-6c86abc037c0 (northeastern Atlantic), doi:10.5285/09511dd0-51db-0e21-e053-6c86abc09b95 (Nordic Seas)

    VLBA Imaging of the OH Maser in IIIZw35

    Get PDF
    We present a parsec-scale image of the OH maser in the nucleus of the active galaxy IIIZw35, made using the Very Long Baseline Array at a wavelength of 18 cm. We detected two distinct components, with a projected separation of 50 pc (for D=110 Mpc) and a separation in Doppler velocity of 70 km/s, which contain 50% of the total maser flux. Velocity gradients within these components could indicate rotation of clouds with binding mass densities of ~7000 solar masses per cubic parsec, or total masses of more than 500,000 solar masses. Emission in the 1665-MHz OH line is roughly coincident in position with that in the 1667-MHz line, although the lines peak at different Doppler velocities. We detected no 18 cm continuum emission; our upper limit implies a peak apparent optical depth greater than 3.4, assuming the maser is an unsaturated amplifier of continuum radiation.Comment: 10 pages, 3 figure
    • …
    corecore