52 research outputs found

    Direct Potable Reuse of Wastewater

    Get PDF
    Water is essential to our societies and mankind. Currently, 844 million people across the globe lack access to potable water. By 2025, it is projected that half of the world population will be in a region of water stress. The water crisis is often thought of as a problem limited to places that have always struggled to have clean water, but it is now affecting new areas such as the southwest United States. With increasing population demands and drought, the feasibility of direct potable reuse (DPR) of wastewater is being considered. According to an EPA report in 2017, there are only four operational or planned DPR facilities in the United States. Of these, the El Paso Advanced Water Purification Facility will be the only one to send treated water directly into the distribution system without blending or continuation onto conventional treatment. As demand and water costs increase, we believe that the implementation of our DPR process for wastewater effluent is a viable option for many communities. The primary contaminants in wastewater treatment plant (WWTP) effluent that must be targeted for potable reuse are organics, bacteria, pathogens, viruses, and suspended and dissolved solids. Our process consists of ozone treatment, granular activated carbon (GAC) treatment, a cartridge particulate filter, ultrafiltration, reverse osmosis, and ultraviolet disinfection. Ozone is used to kill microorganisms in the secondary WWTP effluent before it enters the rest of the system to prevent bio-fouling on the equipment. GAC is used to remove the majority of organic contaminants. A cartridge filter is between the GAC and ultrafiltration (UF) to prevent plugging of the UF membrane. Ultrafiltration is used as pretreatment for the reverse osmosis unit. UF was chosen for its ability to remove pathogens and viruses. Reverse osmosis will remove dissolved solids, a necessary step for the contaminated water to become potable. The final step is disinfection by ultraviolet treatment to ensure no live pathogens reach distribution. Experiments were performed to determine if this combination of steps could effectively treat contaminated water. The necessary treatment must be able to reduce the total dissolved solids (TDS) level from 1,200 parts per million to less than 500 parts per million and reduce TOC from 10 parts per million to less than 0.1 parts per million. Fecal bacteria such as coliform must not be present for the water to be considered potable. A full size plant was designed based on the needs of a community of 5,000, using an average water demand of 100 gallons per person per day. The Poo Pig Sooie team has found Silver City, New Mexico (population ≈ 10,000) to be an ideal city for implementation of the DPR process. This plant would be able to supplement 50% of the potable water (equivalent to a city with a population of 5,000) demands of the city for as little as $1.27 per 1,000 gallons

    Direct Potable Reuse of Wastewater

    Get PDF
    Water is essential to our societies and mankind. Currently, 844 million people across the globe lack access to potable water. By 2025, it is projected that half of the world population will be in a region of water stress.5 The water crisis is often thought of as a problem limited to places that have always struggled to have clean water, but it is now affecting new areas such as the southwest United States. With increasing population demands and drought, the feasibility of direct potable reuse (DPR) of wastewater is being considered. According to an EPA report in 2017, there are only four operational or planned DPR facilities in the United States. Of these, the El Paso Advanced Water Purification Facility will be the only one to send treated water directly into the distribution system without blending or continuation onto conventional treatment.1 As demand and water costs increase, we believe that the implementation of our DPR process for wastewater effluent is a viable option for many communities. The primary contaminants in wastewater treatment plant (WWTP) effluent that must be targeted for potable reuse are organics, bacteria, pathogens, viruses, and suspended and dissolved solids. Our process consists of ozone treatment, granular activated carbon (GAC) treatment, a cartridge particulate filter, ultrafiltration, reverse osmosis, and ultraviolet disinfection. Ozone is used to kill microorganisms in the secondary WWTP effluent before it enters the rest of the system to prevent bio-fouling on the equipment. GAC is used to remove the majority of organic contaminants. A cartridge filter is between the GAC and ultrafiltration (UF) to prevent plugging of the UF membrane. Ultrafiltration is used as pretreatment for the reverse osmosis unit. UF was chosen for its ability to remove pathogens and viruses. Reverse osmosis will remove dissolved solids, a necessary step for the contaminated water to become potable. The final step is disinfection by ultraviolet treatment to ensure no live pathogens reach distribution. Experiments were performed to determine if this combination of steps could effectively treat contaminated water. The necessary treatment must be able to reduce the total dissolved solids (TDS) level from 1,200 parts per million to less than 500 parts per million and reduce TOC from 10 parts per million to less than 0.1 parts per million. Fecal bacteria such as coliform must not be present for the water to be considered potable.15 A full size plant was designed based on the needs of a community of 5,000, using an average water demand of 100 gallons per person per day.18 The Poo Pig Sooie team has found Silver City, New Mexico (population ≈ 10,000) to be an ideal city for implementation of the DPR process. This plant would be able to supplement 50% of the potable water (equivalent to a city with a population of 5,000) demands of the city for as little as $1.27 per 1,000 gallons

    Di-μ-oxido-bis­[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4 N,N′,N′′,N′′′)dimangan­ese(III,IV)] bis­(tetra­phenyl­borate) chloride acetonitrile disolvate

    Get PDF
    The title compound, [Mn2O2(C10H24N4)2](C24H20B)2Cl·2CH3CN, is a mixed-valent MnIII/MnIV oxide-bridged mangan­ese dimer with one chloride and two tetra­phenyl­borate counter-anions. There are two non-coordinated mol­ecules of acetonitrile in the formula unit. A center of inversion is present between the two metal atoms, and, consequently, there is no distinction between MnIII and MnIV metal centers. In the Mn2O2 core, the Mn—O distances are 1.817 (3) and 1.821 (3) Å. The cyclam ligand is in the cis configuration. The chloride counter-anion resides on a center of symmetry, whereas the tetra­phenyl­borate counter-anion is in a general position. The cyclam ligand is hydrogen bonded to the acetonitrile as well as to the chloride anion. One of the phenyl rings of the anion and the acetonitrile solvent molecule are each disordered over two sets of sites

    Verbal Learning and Memory After Cochlear Implantation in Postlingually Deaf Adults: Some New Findings with the CVLT-II

    Get PDF
    OBJECTIVES: Despite the importance of verbal learning and memory in speech and language processing, this domain of cognitive functioning has been virtually ignored in clinical studies of hearing loss and cochlear implants in both adults and children. In this article, we report the results of two studies that used a newly developed visually based version of the California Verbal Learning Test-Second Edition (CVLT-II), a well-known normed neuropsychological measure of verbal learning and memory. DESIGN: The first study established the validity and feasibility of a computer-controlled visual version of the CVLT-II, which eliminates the effects of audibility of spoken stimuli, in groups of young normal-hearing and older normal-hearing (ONH) adults. A second study was then carried out using the visual CVLT-II format with a group of older postlingually deaf experienced cochlear implant (ECI) users (N = 25) and a group of ONH controls (N = 25) who were matched to ECI users for age, socioeconomic status, and nonverbal IQ. In addition to the visual CVLT-II, subjects provided data on demographics, hearing history, nonverbal IQ, reading fluency, vocabulary, and short-term memory span for visually presented digits. ECI participants were also tested for speech recognition in quiet. RESULTS: The ECI and ONH groups did not differ on most measures of verbal learning and memory obtained with the visual CVLT-II, but deficits were identified in ECI participants that were related to recency recall, the buildup of proactive interference, and retrieval-induced forgetting. Within the ECI group, nonverbal fluid IQ, reading fluency, and resistance to the buildup of proactive interference from the CVLT-II consistently predicted better speech recognition outcomes. CONCLUSIONS: Results from this study suggest that several underlying foundational neurocognitive abilities are related to core speech perception outcomes after implantation in older adults. Implications of these findings for explaining individual differences and variability and predicting speech recognition outcomes after implantation are discussed

    Formation Flying and Change Detection for the UNSW Canberra Space ‘M2’ Low Earth Orbit Formation Flying CubeSat Mission

    Full text link
    The University of New South Wales, Canberra (UNSW Canberra) embarked on an ambitious CubeSatellite research, development, and education program in 2017 through funding provided by the Royal Australian Air Force (RAAF). The program consisted of M1 (Mission 1), M2 Pathfinder, and concludes with the formation flying mission M2. M2 is the final mission comprising two 6U CubeSatellites flying in formation using differential aerodynamic drag control. The M2 satellites were launched in a conjoined 12U form factor on RocketLab’s ‘They Go Up So Fast’ launch in March 2021. On 10th September 2021 the spacecraft divided into two 6U CubeSats (M2-A and M2-B) under the action of a small spring force in their near-circular 550km, 45-degree inclination orbit. The formation is controlled by varying the spacecrafts’ attitude, which creates a large variation in the aerodynamic drag force due to the change in the cross-sectional area from the large, double-deployable, solar arrays located on the zenith face of the spacecraft. This paper presents the outcomes of the Formation Flying and Change Detection primary mission objectives for the mission. The results are generated by collecting and analysing optical and RF (Radio Frequency) space domain awareness sensor data from the ground and validating them against GPS (Global Positioning System) and attitude data downlinked from the spacecraft. The outcomes of the broader mission objectives, which include increasing the Technology Readiness Level for a suite of intelligent on-board optical and RF sensor technologies, will be presented in subsequent publications. The results presented here comprise two major campaigns: 1.) The spacecraft separation campaign when the original 12U form factor deployed following launch split in half to form the M2-A and M2-B satellites, and 2) the demonstration of active formation control of the spacecraft via differential aerodynamic drag. M2-A and M2-B underwent several major configuration changes during the spacecraft separation campaign. The results from ground-based sensors detecting the 12U spacecraft separating into two distinct (6U) objects are presented. The effect of the double-deployable solar arrays deployment on the relative orbital motion of the M2-A and M2-B spacecraft is illustrated and compared to data from optical and RF ground-based measurements taken during this window. The formation control campaign involved actively controlling the spacecraft via differential aerodynamic drag in order to significantly alter the separation distance. The mission demonstrated the capability to switch the leading spacecraft’s position between M2-A and M2-B and to actively control separation distance ranging from 130km down to 1km. Formation control is achieved via open-loop, pre-scheduled, commands issued from the UNSW Canberra Space ground station. A two-stage modelling and simulation process is used to derive the scheduled attitude states. Firstly, a batch least squares orbit determination algorithm is applied to GPS data from a steady-state differential drag actuation period (where one spacecraft is in maximum drag and the other in its minimum drag attitude configuration). The batch least squares orbit determination is conducted out using the NASA General Mission Analysis Tool (GMAT), resulting in precise state estimates for each spacecraft and drag coefficient (Cd) estimates for both the maximum and minimum drag configurations. Predictions of trajectory for various attitude profiles can be produced by tailoring the spacecraft’s drag coefficients between the maximum and minimum values generated by the batch least squares state estimation process. Ground-based optical and RF space domain awareness (SDA) sensor measurements collected during the manoeuvre campaign are compared to the spacecraft’s GPS and attitude telemetry data. The SDA sensors are actively seeking to detect changes in the separation distance between the spacecraft. Initial results from an investigation into whether changes observed in photometric light curve signatures can signal the commencement of a differential drag manoeuvre are presented

    A randomised controlled crossover trial investigating the short-term effects of different types of vegetables on vascular and metabolic function in middle-aged and older adults with mildly elevated blood pressure: the VEgetableS for vaScular hEaLth (VESSEL) study protocol

    Get PDF
    A diet rich in fruits and vegetables is recommended for cardiovascular health. However, the majority of Australians do not consume the recommended number of vegetable servings each day. Furthermore, intakes of vegetables considered to have the greatest cardiovascular benefit are often very low. Results from prospective observational studies indicate that a higher consumption of cruciferous vegetables (e.g. broccoli, cabbage, cauliflower) is associated with lower cardiovascular disease risk. This may be due to the presence of specific nutrients and bioactive compounds found almost exclusively, or at relatively high levels, in cruciferous vegetables. Therefore, the aim of this randomised controlled crossover trial is to determine whether regular consumption of cruciferous vegetables results in short-term improvement in measures related to cardiovascular disease risk, including ambulatory blood pressure, arterial stiffness, glycaemic control, and circulating biomarkers of oxidative stress and inflammation
    • …
    corecore