30 research outputs found

    Stem and soil CO2 efflux responses of Pinus radiata plantations to temperature, season, age, time (day/night) and fertilization

    Get PDF
    Stem CO2 efflux is a highly variable component of the carbon budget of forest ecosystems. It reflects the balance between the CO2 respired by the living stem tissues, less the CO2 dissolved in the xylem sap moving upward in the transpiration stream, plus the CO2 transported from the roots and released at the stem. Although knowledge about such fluxes at different spatial and temporal scales has markedly increased, knowledge of the effects of silviculture treatments, such as fertilization, on stem CO2 effluxes are still limited, particularly when connecting above- and belowground processes. Using measurements obtained from twin plots (one control, one fertilized) installed in five-, 12- and 23-year-old stands of Pinus radiata, the objective of this study was to examine the influence of the temperature, stand age, fertilization, season and time of measurement (day/night) on the stem CO2 efflux, soil CO2 efflux and their ratio. There was a strong significant positive relationship between the stem CO2 efflux and temperature. The slope between these two variables declined as the stand age increased and was higher for nighttime than daytime measurements. The stem CO2 efflux was higher in the fertilized plots compared with the unfertilized (control) plots for the 5- and 12- but not the 23-year-old age classes. In contrast, the soil CO2 efflux was largely unaffected by the temperature, time of measurement (day/night), fertilization and stand age; however, significantly higher values of soil CO2 efflux were measured during spring than during the other seasons. Given the relative invariance of the soil CO2 efflux to the temperature and treatment effects, the ratio of the stem:soil CO2 effluxes was affected by the same factors as the stem CO2 effluxes. These results suggest that fertilization would increase wood production and wood CO2 efflux without changing the soil CO2 efflux, thus most likely proportionally increasing aboveground C partitioning and decrease belowground C partitioning, with this effect being enhanced at younger ages.El flujo de CO2 desde los fustes es una componente altamente variable en el balance global de carbono en ecosistemas forestales. Refleja el balance entre el CO2 respirado por los tejidos vivos del fuste, menos el CO2 disuelto en la savia del xilema que se mueve hacia arriba como resultado de la transpiración, más el CO2 transportado desde las raíces y liberado en el fuste. Aunque el conocimiento acerca de estos flujos a diferentes escalas espaciales y temporales ha aumentado marcadamente, los efectos de tratamientos silviculturales, tales como la fertilización, en la respiración de los fustes es aún limitada particularmente al conectar procesos arriba y abajo del suelo. Usando medidas en parcelas gemelas (una parcela testigo, una parcela fertilizada) instaladas en rodales de 5,12 y 23 años de edad de Pinus radiata, el objetivo del estudio fue examinar la influencia de la temperatura, edad, fertilización, temporada y tiempo del día (día/noche) en los flujos de CO2 desde los fustes, desde los suelos y la razón entre ellos. Se encontró una fuerte relación positiva entre el flujo de CO2 desde los fustes con la temperatura de los mismos. La pendiente entre estas dos variables declinó con la edad, siendo superior durante la noche que durante el día. El flujo de CO2 desde los fustes fue mayor en las parcelas fertilizadas que en las testigo en los rodales de 5 y 12 años pero no en el de 23 años. En contraste, los flujos de CO2 desde los suelos fueron mayoritariamente invariantes a la temperatura del suelo, al tiempo de medición (día/noche), fertilización y edad de los rodales; aunque dichos valores fueron significativamente mayores durante la primavera comparado con las otras temporadas. Dada la relativa invariabilidad de los flujos de CO2 de los suelos a la temperatura y a los efectos de los tratamientos (fertilización, edad, día/noche), la razón de los flujos de CO2 entre fustes y suelos fueron afectados por los mismos factores que afectaron los flujos de CO2 desde los fustes. Estos resultados sugieren que la fertilización temprana aumenta drásticamente la producción y flujos de CO2 de los fustes, sin cambiar los flujos de CO2 desde los suelos; o en otras palabras, asignando proporcionalmente más carbono arriba del suelo y menos abajo del suelo, con este efecto decreciendo con la edad de la plantación

    An air-drying model for piled logs of Eucalyptus globulus and Eucalyptus nitens in Chile

    Get PDF
    Artículo de publicación ISIBackground: Water accounts for around half of the total mass in living trees, and therefore large savings can be achieved if logs are dried before transporting or burning. Methods: An air-drying model for piled logs of Eucalyptus globulus Labill. and Eucalyptus nitens H.Deane & Maiden was developed. Daily moisture content (MC) loss was modelled based on meteorological variables and pile characteristics. The trial had a factorial design with two species, two debarking treatments (with or without bark) and two log lengths (244 and 350 cm). Independent trials started in July 2007 (winter), October 2007 (spring) and January 2008 (summer). There were five replicate piles per season and treatment. Wood pile masses were weighted weekly or twice weekly using a crane, a 10,000 kg balance and chains to hold the piles. Results: The main and interactive effects of seasons and treatments on daily MC loss were highly significant. However, the effect of season (climate) was far greater than the main effects of treatments or the season × treatment interaction. Overall, E. globulus dried 20 % faster than E. nitens, debarked logs dried 8 % faster than barked logs and 244 cm logs dried 3 % faster than 350 cm logs. Daily MC loss for the current day was better explained by a power function of MC at the start of the day, daily air relative humidity, daily air temperature and the number of logs per square metre of pile cross-section (or an equivalent average log diameter). Conclusions: The air-drying model for piled logs can be used to predict drying times (days) to achieve a given target moisture content, providing a new tool for decision-making in forest transport and industrial planning.Forestal Mininco S.A

    Representing Nutrition of Pinus Radiata in Physiological Hybrid Productivity Models

    Get PDF
    Hybrid physiological models are being increasingly used to assess productivity, carbon sequestration, water and nutrient use and environmental impacts of management decisions. Users include forest managers, politicians, environmental agencies and scientists. However a wider use of these models has been prevented as a result of an incomplete understanding of the mechanisms regulating carbon allocation, nutrient availability in soils and nutrient uptake by trees. On-going innovation in clonal forestry, genetic improvement and vegetation management techniques is also poorly represented in hybrid models. This thesis examines means to represent nutrition and genotype-nutrition interactions in productivity physiological hybrid models. Nutrient limitations and growth differences between genotypes were hypothesized to operate through key physiological processes: photosynthesis, carbon allocation and nutrient internal cycling. In order to accomplish the aims of the study both greenhouse and field experimentation were carried out. In a first experiment, responses of photosynthesis (A) to intercellular CO₂ concentration (Ci) were measured in a fast- and a slow-growing clone of Pinus radiata D. Don cultivated in a greenhouse in a factorial combination of nitrogen and phosphorus supply, and analyzed using the biochemical model of leaf photosynthesis described by Farquhar et al. (1980). There were significant positive linear relationships between the parameters, Vcmax, Jmax, Tp and both foliar nitrogen (Na) and phosphorus (Pa) concentration on an area basis. The study showed that the effects of nitrogen and phosphorus supply on photosynthesis were statistically independent and that the photosynthetic behaviour of the two clones was equivalent. In a similar study, gas exchange and chlorophyll fluorescence were simultaneously measured to determine internal transfer conductance (gm) based on the "constant J method". Transfer conductance may pose significant limitations to photosynthesis which may be differentially affected by nutrition and genotype in Pinus radiata. Values of gm were similar to those of stomatal conductance (gs) and their ratio (gm / gs) was not influenced by nutrient supply or clone being on average (±1 SE) 1.22 ±0.04. Relative mesophyll limitations (LM, 16%) to photosynthesis were marginally greater than those imposed by stomata (LS, 13%), and together smaller than the relative limitations posed to photosynthesis by biochemical processes (LB, 71%). The CO₂ concentration in the intercellular air spaces (Ci) was (±1 SE) 53 ±3 µmol mol-1 lower than in the atmosphere (Ca) while CO₂ concentration in the chloroplasts (Cc) was (±1 SE) 48 ±2 µmol mol-1 less than Ci. Values of LS, LM and LB and CO₂ diffusion gradients posed by gs (Ca-Ci) and gm (Ci-Cc) did not change with nutrient supply or clone. In a third experiment, one-year old Pinus radiata cuttings from four genotypes were cultivated in silica sand with a factorial combination of nitrogen (N0=1.43 and N1=7.14 mM) and phosphorus (P0=0.084 and P1=0.420 mM) supply for 24 months. N supply was enriched with ¹⁵N to 2.5⁰/₀₀ (labelled N) during the first year, then plants transferred to clean sand and cultivated for another year with ¹⁵N at levels close to natural abundance (0.3664899 atom percent ¹⁵N, δ¹⁵N 0.5115 ⁰/₀₀) provided by the source of N in nutrient solution applied during the second year. Recovery of labelled and unlabelled N was used to estimate N remobilization. N remobilization scaled with plant growth, N content and N and P supply. In relative terms, 65% of all stored N was remobilized in the high-nutrient supply regime compared to 42-48% at lower N and P addition rates. Most N remobilization occurred during spring-summer (77%), coincidently with the largest proportion of needle development (80%), indicating that N remobilization was driven by sink-strength. Foliage was by far the main source for internal cycling while roots were the main sink (40%). Clones exhibited differences in N remobilization capacity, but these differences were completely explained by the size of the N pool before remobilization took place, indicating that N remobilization performance was similar among clones. In a fourth study, four clones were cultivated in silica sand with a factorial combination of nitrogen and phosphorus supply for ten months, and patterns of carbon allocation examined using a carbon balance approach. Gross-primary productivity (GPP) scaled mainly with nitrogen but also with phosphorus supply. The fraction of GPP (GPP = ANPP + APR + TBCA) allocated to above-ground components (ANPP) increased with N and P supply at the expense of total-below ground C allocation (TBCA) with no apparent effect on the fraction of GPP partitioned to above-ground plant respiration (APR). Carbon use efficiency (NPP:GPP) scaled with nutrient supply, being 0.42 in the low-nutrient supply regime compared to 0.51 in the high-nutrient supply regime, suggesting that in poor fertility environments a larger proportion of the C budget is respired compared to the net productivity. Fast-growing clones allocated about 2-4% more carbon to above-ground components (ANPP) at the expense of carbon allocated below-ground (TBCA) with no effect on carbon respired above-ground (APR), indicating that faster-growing genotypes allocate more carbon to leaf area which may compound and increase overall GPP over time. The field component of this thesis was conducted in a subset of locations where ENSIS (formerly New Zealand Forest Research Institute) had established trials to test the influence of species, soil disturbance and plant nutrition on sustainability indicators. Plots were small in size (3 m × 3 m) with trees spaced at 0.5 m × 0.5 m (40 000 trees ha-1) with nine measurement trees surrounded by a two-row buffer. All sites were planted in winter 2001 and harvested in spring 2005. The aim of this pilot study was to examine patterns of carbon allocation during the fourth year after planting in control and fertilized mini-plots of Pinus radiata in five sites with contrasting climate and soil conditions in the South Island of New Zealand. The study showed that the fraction of gross-primary productivity allocated belowground increased as the soil C:N ratio increased. However, these results should be interpreted with caution due to the unusual nature of the trial and the reduced number of sites studied. Two existing physiological models were selected for the discussion in this thesis (3-PG, Landsberg and Waring 1997; canopy net carbon exchange model, Whitehead et al. 2002). Potential improvements for the nutritional component of 3-PG comprise: accounting for reductions in carbon use efficiency (NPP:GPP) in poor-fertility environments, adding a preliminary fertility modifier (FN, 0-1) driven by soil C : N ratio and soil N, adding a preliminary relationship between carbon allocation to roots and the soil C : N ratio and representing faster-growing genotypes by increasing their leaf area but not their photosynthetic performance. The canopy net carbon exchange model (NCE) combines the coupled model of leaf photosynthesis - stomatal conductance described by Leuning (1995) with canopy structure and a water balance model to scale carbon assimilation from leaves to canopies. Potential improvements to account for nutrient deficiencies in the leaf model by Leuning (1995), comprise using nutrient ratios to discriminate nitrogen (Na/Pa 23 mol mol-1), adding relationships between photosynthetic model parameters Vcmax and Jmax to Pa, and correcting the estimation of photosynthetic parameters Vcmax and Jmax by accounting for transfer conductance (gm). The canopy net carbon exchange model may be also modified to account for carbon-use efficiency, carbon allocation to roots and genotype in a similar form to that proposed for 3-PG. The results previously outlined provide a preliminary framework to represent tree and soil nutrition in physiological hybrid productivity models

    Financial Comparison of Continuous-Cover Forestry, Rotational Forest Management and Permanent Carbon Forest Regimes for Redwood within New Zealand

    No full text
    Continuous-cover forestry (CCF), which maintains a relatively intact forest cover through selective harvesting, has emerged over the last few decades as a popular alternative to rotational forest management (RFM). Coast redwood, which is native to the western United States, grows rapidly in New Zealand and is well suited to CCF as it has high shade tolerance, an ability to coppice from the cut stem, and resistance to pests, diseases, wind and fire. A forest estate model was used to compare the carbon sequestration, timber production and profitability of redwood CCF, RFM and permanent carbon forestry (PCF) regimes at a regional level within New Zealand. Through linear programming, this model optimised carbon accumulation and harvesting decisions across a large forest to meet a series of constraints associated with each regime. All three regimes represented good investment decisions, but CCF had the highest soil expectation value (SEV) within most North Island regions while PCF had a slightly higher SEV within the South Island regions. Under the transitional CCF (CCFt), revenue from carbon initially increased before levelling out at 40 years, after which time a sustainable harvest of high-value timber commenced in perpetuity without additional revenue from carbon. The CCFt regime transitioned to a steady-state condition, with a uniform age class distribution from year 150 onwards (CCFs), after which time a very high SEV was attained that exceeded that of CCFt by four-fold in the North Island (NZD 136,126/ha vs. NZD 34,430/ha) and seven-fold (NZD 44,714 vs. NZD 6267/ha) in the South Island. This study highlights the profitability of managing redwood under CCF and how initial carbon revenue can be used to finance the transition of the forest to a steady-state condition that produces a stream of valuable timber with a very high rate of return

    Leaf Fluxes of Carbon Dioxide, Methane and Biogenic Volatile Organic Compounds of the Urban Trees <i>Platanus × acerifolia</i> and <i>Schinus molle</i> in Santiago, Chile

    No full text
    This study assessed leaf fluxes of CO2, CH4 and biogenic volatile organic compounds (BVOC) for two common urban tree species, Platanus × acerifolia (exotic) and Schinus molle (native), widely distributed in Santiago, Chile. The emission factors (EF) and the Photochemical Ozone Creation Index (POCI) for S. molle and P. × acerifolia were estimated. The global EF was 6.4 times higher for P. × acerifolia compared with S. molle, with similar rates of photosynthesis for both species. Isoprene represented more than 86% of the total BVOCs leaf fluxes being 7.6 times greater for P. × acerifolia than S. molle. For P. × acerifolia, BVOCs represented 2% of total carbon fixation while representing 0.24% for S. molle. These results may suggest that plant species growing outside their ecological range may exhibit greater BVOCs leaf fluxes, proportional to photosynthesis, compared to well-adapted ones. The results found may contribute to better urban forest planning

    Leaf Fluxes of Carbon Dioxide, Methane and Biogenic Volatile Organic Compounds of the Urban Trees Platanus &times; acerifolia and Schinus molle in Santiago, Chile

    No full text
    This study assessed leaf fluxes of CO2, CH4 and biogenic volatile organic compounds (BVOC) for two common urban tree species, Platanus &times; acerifolia (exotic) and Schinus molle (native), widely distributed in Santiago, Chile. The emission factors (EF) and the Photochemical Ozone Creation Index (POCI) for S. molle and P. &times; acerifolia were estimated. The global EF was 6.4 times higher for P. &times; acerifolia compared with S. molle, with similar rates of photosynthesis for both species. Isoprene represented more than 86% of the total BVOCs leaf fluxes being 7.6 times greater for P. &times; acerifolia than S. molle. For P. &times; acerifolia, BVOCs represented 2% of total carbon fixation while representing 0.24% for S. molle. These results may suggest that plant species growing outside their ecological range may exhibit greater BVOCs leaf fluxes, proportional to photosynthesis, compared to well-adapted ones. The results found may contribute to better urban forest planning

    Biomass and dominance of conservative species drive above-ground biomass productivity in a mediterranean-type forest of Chile

    No full text
    Abstract Background Forest productivity has a pivotal role in human well-being. Vegetation quantity, niche complementarity, mass-ratio, and soil resources are alternative/complementary ecological mechanisms driving productivity. One challenge in current forest management depends on identifying and manipulating these mechanisms to enhance productivity. This study assessed the extent to which these mechanisms control above-ground biomass productivity (AGBP) of a Chilean mediterranean-type matorral. AGBP measured as tree above-ground biomass changes over a 7-years period, was estimated for twelve 25 m × 25 m plots across a wide range of matorral compositions and structures. Variables related to canopy structure, species and functional diversity, species and functional dominance, soil texture, soil water and soil nitrogen content were measured as surrogates of the four mechanisms proposed. Linear regression models were used to test the hypotheses. A multimodel inference based on the Akaike’s information criterion was used to select the best models explaining AGBP and for identifying the relative importance of each mechanism. Results Vegetation quantity (tree density) and mass-ratio (relative biomass of Cryptocarya alba, a conservative species) were the strongest drivers increasing AGBP, while niche complementarity (richness species) and soil resources (sand, %) had a smaller effect either decreasing or increasing AGBP, respectively. This study provides the first assessment of alternative mechanisms driving AGBP in mediterranean forests of Chile. There is strong evidence suggesting that the vegetation quantity and mass-ratio mechanisms are key drivers of AGBP, such as in other tropical and temperate forests. However, in contrast with other studies from mediterranean-type forests, our results show a negative effect of species diversity and a small effect of soil resources on AGBP. Conclusion AGBP in the Chilean matorral depends mainly on the vegetation quantity and mass-ratio mechanisms. The findings of this study have implications for matorral restoration and management for the production of timber and non-timber products and carbon sequestration

    Precision Forestry Research Project – Final Report

    Get PDF

    Stomatal Conductance Responses of <i>Acacia caven</i> to Seasonal Patterns of Water Availability at Different Soil Depths in a Mediterranean Savanna

    No full text
    Soil water availability controls plant productivity in seasonally dry ecosystems, although plant water use at different soil depths and times is, to the best of our knowledge, not clearly understood. Environmental variables at the canopy level and the soil volumetric water content (VWC) at five different soil depths were continuously recorded for three years (2011&#8315;2014) in an Acacia caven savanna site in central Chile. Stomatal conductance ( g s ) was measured every hour during daytime for 42 days distributed across the study period. Values of g s were weakly controlled by photosynthetically active radiation, vapor pressure deficit, and leaf temperature when considering the whole series. The variance proportion being explained increased from 5% to 20% if the whole series was partitioned into a dry and a wet season. According to the above, A. caven exhibited a more anisohydric behavior than previously thought. When we added the VWC in the root zone, to the g s atmospheric variables model, R2 increased to 47% when separately considering the dry and wet seasons. However, we did not find a differentiated use of water in the root zone, but instead a joint activity of the radicular system within the top 100 cm of the soil controlling g s

    Growth responses after a future crop tree thinning and a thinning from below in a second-growth Nothofagus pumilio forest in Tierra del Fuego, Chile

    No full text
    Abstract Nothofagus pumilio (lenga) is the most important native species for timber production in southern Patagonia both in Chile and Argentina. Thinning application to second-growth N. pumilio forests has been limited in Patagonia, probably because of the long time necessary for the investment to be recovered. In addition, experimental trials have focused mostly on thinnings from below, leaving a high residual stand density, which has led to a modest growth response. Using measurements (1995–2014) obtained from a thinning trial carried out in a second-growth N. pumilio forest located in Tierra del Fuego (Chile), the objective of this case study was to analyze whether selective thinnings with future crop trees (in the sense of Z-Bäumen thinning) promote greater growth responses than those from a thinning from below. In addition, we explored the associations between climatic factors and age on N. pumilio tree growth. Trial treatments comprised a control, a thinning from below and a future crop tree thinning. The growth response after a future crop tree thinning was greater and lasted for a longer period (10 yrs) than did the thinning from below (4 yrs). The tree basal area and diameter at breast height (dbh) growth increased with dbh and annual absolute minimum temperature and decreased with age for the unthinned treatment during the period from 1977–2014 (~70–110 yrs old). Our results suggest that the future crop thinning might be a better alternative than the thinning from below for secondary N. pumilio forests in Patagonia due to the greater growth response while being a less intensive silvicultural method.Resumen Nothofagus pumilio (lenga) es la especie nativa más importante para la producción maderera del sur de la Patagonia (Chile y Argentina). Raleos en bosques secundarios de N. pumilio no han sido de interés probablemente debido al largo tiempo de recuperación de la inversión. Además, mayoritariamente se han ensayado raleo por lo bajo, dejando un rodal residual denso y con bajo crecimiento diamétrico. Usando mediciones (1995–2014) de un ensayo de raleo instalado en 1995 en un bosque secundario de N. pumilio, en Tierra del Fuego (Chile), el objetivo de este estudio de caso fue analizar, si raleos selectivos con árboles futuro (en el sentido de Z-Bäumen), originan un mayor crecimiento diamétrico que un raleo por lo bajo. Además, se exploran asociaciones entre factores climáticos y la edad en el crecimiento diametral de N. pumilio, para interpretar los efectos del raleo en los bosques. Los ensayos consistieron en un testigo, un raleo por lo bajo y un raleo selectivo con árboles futuro. La respuesta en crecimiento diametral del raleo selectivo con árboles futuro fue mayor y se prolongó por más tiempo (10 años), respecto del raleo por lo bajo (4 años). El crecimiento diamétrico y en área basal para el testigo se incrementó con el diámetro y la temperatura mínima absoluta y disminuyó con la edad a lo largo del período 1977–2014 (~70–110 años de edad). El raleo selectivo con árboles futuro representaría una mejor opción para el manejo de los bosques secundarios de N. pumilio, respecto del raleo por lo bajo
    corecore