12,266 research outputs found
Learning 3D Navigation Protocols on Touch Interfaces with Cooperative Multi-Agent Reinforcement Learning
Using touch devices to navigate in virtual 3D environments such as computer
assisted design (CAD) models or geographical information systems (GIS) is
inherently difficult for humans, as the 3D operations have to be performed by
the user on a 2D touch surface. This ill-posed problem is classically solved
with a fixed and handcrafted interaction protocol, which must be learned by the
user. We propose to automatically learn a new interaction protocol allowing to
map a 2D user input to 3D actions in virtual environments using reinforcement
learning (RL). A fundamental problem of RL methods is the vast amount of
interactions often required, which are difficult to come by when humans are
involved. To overcome this limitation, we make use of two collaborative agents.
The first agent models the human by learning to perform the 2D finger
trajectories. The second agent acts as the interaction protocol, interpreting
and translating to 3D operations the 2D finger trajectories from the first
agent. We restrict the learned 2D trajectories to be similar to a training set
of collected human gestures by first performing state representation learning,
prior to reinforcement learning. This state representation learning is
addressed by projecting the gestures into a latent space learned by a
variational auto encoder (VAE).Comment: 17 pages, 8 figures. Accepted at The European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases 2019
(ECMLPKDD 2019
Consistency of parity-violating pion-nucleon couplings extracted from measurements in 18F and 133Cs
The recent measurement of the nuclear anapole moment of 133Cs has been
interpreted to yield a value of the weak pion-nucleon coupling H_pi^1 which
contradicts the upper limit from the 18F experiments. We argue that because of
the sensitivity of the anapole moment to H_rho^0 in the odd proton nucleus
133Cs, there is a combination of weak meson-nucleon couplings which satisfies
both experiments and which is (barely) in agreement with theory. In addition,
the anapole moment measurement in 205Tl gives a constraint which is
inconsistent with the value from 133Cs, calling into question the theory of
nuclear anapole moments. We argue that measurements of directional asymmetry in
n+p-->d+gamma and in the photo-disintegration of the deuteron by circularly
polarized photons, combined with results from pp scattering, would determine
H_pi^1 and several other weak meson-nucleon couplings in a model-independent
way.Comment: 9 pages, RevTeX, 1 figure, eps, submitted to Phys. Rev.
Usability Evaluation in Virtual Environments: Classification and Comparison of Methods
Virtual environments (VEs) are a relatively new type of human-computer interface in which users perceive and act in a three-dimensional world. The designers of such systems cannot rely solely on design guidelines for traditional two-dimensional interfaces, so usability evaluation is crucial for VEs. We present an overview of VE usability evaluation. First, we discuss some of the issues that differentiate VE usability evaluation from evaluation of traditional user interfaces such as GUIs. We also present a review of VE evaluation methods currently in use, and discuss a simple classification space for VE usability evaluation methods. This classification space provides a structured means for comparing evaluation methods according to three key characteristics: involvement of representative users, context of evaluation, and types of results produced. To illustrate these concepts, we compare two existing evaluation approaches: testbed evaluation [Bowman, Johnson, & Hodges, 1999], and sequential evaluation [Gabbard, Hix, & Swan, 1999]. We conclude by presenting novel ways to effectively link these two approaches to VE usability evaluation
Using Pinch Gloves(TM) for both Natural and Abstract Interaction Techniques in Virtual Environments
Usable three-dimensional (3D) interaction techniques are difficult to design, implement, and evaluate. One reason for this is a poor understanding of the advantages and disadvantages of the wide range of 3D input devices, and of the mapping between input devices and interaction techniques. We present an analysis of Pinch Glovesâ„¢ and their use as input devices for virtual environments (VEs). We have developed a number of novel and usable interaction techniques for VEs using the gloves, including a menu system, a technique for text input, and a two-handed navigation technique. User studies have indicated the usability and utility of these techniques
An Introduction to 3D User Interface Design
3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article
Hartree-Fock calculations for the ground and first excited states of H2
Hartree-Fock calculation for ground and first excited state of H
Collision and Diffusion in Microwave Breakdown of Nitrogen Gas in and around Microgaps
The microwave induced breakdown of N2 gas in microgaps was modeled using the
collision frequency between electrons and neutral molecules and the effective
electric field concept. Low pressure breakdown at the threshold electric field
occurs outside the gap, but at high pressures it is found to occur inside the
microgap with a large threshold breakdown electric field corresponding to a
very large electron oscillation amplitude. Three distinct pressure regimes are
apparent in the microgap breakdown: a low pressure multipactor branch, a
mid-pressure Paschen branch, both of which occur in the space outside the
microgap, and a high pressure diffusion-drift branch, which occurs inside the
microgap. The Paschen and diffusion-drift branches are divided by a sharp
transition and each separately fits the collision frequency model. There is
evidence that considerable electron loss to the microgap faces accompanies the
diffusion-drift branch in microgaps.Comment: 4 figure
- …