171 research outputs found

    Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering

    Get PDF
    Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows

    SB-224289 Antagonizes the Antifungal Mechanism of the Marine Depsipeptide Papuamide A

    Get PDF
    In order to expand the repertoire of antifungal compounds a novel, high-throughput phenotypic drug screen targeting fungal phosphatidylserine (PS) synthase (Cho1p) was developed based on antagonism of the toxin papuamide A (Pap-A). Pap-A is a cyclic depsipeptide that binds to PS in the membrane of wild-type Candida albicans, and permeabilizes its plasma membrane, ultimately causing cell death. Organisms with a homozygous deletion of the CHO1 gene (cho1ΔΔ) do not produce PS and are able to survive in the presence of Pap-A. Using this phenotype (i.e. resistance to Pap-A) as an indicator of Cho1p inhibition, we screened over 5,600 small molecules for Pap-A resistance and identified SB-224289 as a positive hit. SB-224289, previously reported as a selective human 5-HT1B receptor antagonist, also confers resistance to the similar toxin theopapuamide (TPap-A), but not to other cytotoxic depsipeptides tested. Structurally similar molecules and truncated variants of SB-224289 do not confer resistance to Pap-A, suggesting that the toxin-blocking ability of SB-224289 is very specific. Further biochemical characterization revealed that SB-224289 does not inhibit Cho1p, indicating that Pap-A resistance is conferred by another undetermined mechanism. Although the mode of resistance is unclear, interaction between SB-224289 and Pap-A or TPap-A suggests this screening assay could be adapted for discovering other compounds which could antagonize the effects of other environmentally- or medically-relevant depsipeptide toxins

    Return of non-ACMG recommended incidental genetic findings to pediatric patients: Considerations and opportunities from experiences in genomic sequencing

    Get PDF
    BACKGROUND: The uptake of exome/genome sequencing has introduced unexpected testing results (incidental findings) that have become a major challenge for both testing laboratories and providers. While the American College of Medical Genetics and Genomics has outlined guidelines for laboratory management of clinically actionable secondary findings, debate remains as to whether incidental findings should be returned to patients, especially those representing pediatric populations. METHODS: The Sequencing Analysis and Diagnostic Yield working group in the Clinical Sequencing Evidence-Generating Research Consortium has collected a cohort of pediatric patients found to harbor a genomic sequencing-identified non-ACMG-recommended incidental finding. The incidental variants were not thought to be associated with the indication for testing and were disclosed to patients and families. RESULTS: In total, 23 non-ACMG-recommended incidental findings were identified in 21 pediatric patients included in the study. These findings span four different research studies/laboratories and demonstrate differences in incidental finding return rate across study sites. We summarize specific cases to highlight core considerations that surround identification and return of incidental findings (uncertainty of disease onset, disease severity, age of onset, clinical actionability, and personal utility), and suggest that interpretation of incidental findings in pediatric patients can be difficult given evolving phenotypes. Furthermore, return of incidental findings can benefit patients and providers, but do present challenges. CONCLUSIONS: While there may be considerable benefit to return of incidental genetic findings, these findings can be burdensome to providers and present risk to patients. It is important that laboratories conducting genomic testing establish internal guidelines in anticipation of detection. Moreover, cross-laboratory guidelines may aid in reducing the potential for policy heterogeneity across laboratories as it relates to incidental finding detection and return. However, future discussion is required to determine whether cohesive guidelines or policy statements are warranted

    Dynamic DNA methylation across diverse human cell lines and tissues

    Get PDF
    As studies of DNA methylation increase in scope, it has become evident that methylation has a complex relationship with gene expression, plays an important role in defining cell types, and is disrupted in many diseases. We describe large-scale single-base resolution DNA methylation profiling on a diverse collection of 82 human cell lines and tissues using reduced representation bisulfite sequencing (RRBS). Analysis integrating RNA-seq and ChIP-seq data illuminates the functional role of this dynamic mark. Loci that are hypermethylated across cancer types are enriched for sites bound by NANOG in embryonic stem cells, which supports and expands the model of a stem/progenitor cell signature in cancer. CpGs that are hypomethylated across cancer types are concentrated in megabase-scale domains that occur near the telomeres and centromeres of chromosomes, are depleted of genes, and are enriched for cancer-specific EZH2 binding and H3K27me3 (repressive chromatin). In noncancer samples, there are cell-type specific methylation signatures preserved in primary cell lines and tissues as well as methylation differences induced by cell culture. The relationship between methylation and expression is context-dependent, and we find that CpG-rich enhancers bound by EP300 in the bodies of expressed genes are unmethylated despite the dense gene-body methylation surrounding them. Non-CpG cytosine methylation occurs in human somatic tissue, is particularly prevalent in brain tissue, and is reproducible across many individuals. This study provides an atlas of DNA methylation across diverse and well-characterized samples and enables new discoveries about DNA methylation and its role in gene regulation and disease

    Racism, anti-racist practice and social work: articulating the teaching and learning experiences of Black social workers

    Get PDF
    In the mid 1990s a Black practice teacher programme was established in Manchester and Merseyside with the primary aim to increase the number of Black practice teachers in social work organisations, and in turn provide a supportive and encouraging learning environment for Black student social workers whilst on placement. In the north‐west of England research has been undertaken, to establish the quality of the practice teaching and student learning taking place with Black practice teachers and students. This paper is an exploration of the ideas generated within the placement process that particularly focused on the discourse of racism and ant‐racist practice. Black students and practice teachers explain their understanding of racism and anti‐racist practice within social work. From the research, the paper will critique some of the ideas concerning anti‐racism. In particular, it will question whether anti‐racist social work practice needs to be re‐evaluated in the light of a context with new migrants, asylum seekers and refugees. It will concluded, by arguing that whilst the terms anti‐racism, Black and Minority Ethnic have resonance as a form of political strategic essentialism, it is important to develop more positive representations in the future

    Solar-Induced Fluorescence Detects Interannual Variation in Gross Primary Production of Coniferous Forests in the Western United States

    Get PDF
    Quantifying gross primary production (GPP), the largest flux of the terrestrial carbon cycle, remains difficult at the landscape scale. Evergreen needleleaf (coniferous) forests in the western United States constitute an important carbon reservoir whose annual GPP varies from year‐to‐year due to drought, mortality, and other ecosystem disturbances. Evergreen forest productivity is challenging to determine via traditional remote sensing indices (i.e., NDVI and EVI), because detecting environmental stress conditions is difficult. We investigated the utility of solar‐induced chlorophyll fluorescence (SIF) to detect year‐to‐year variation in GPP in four coniferous forests varying in species composition in the western United States (Sierra Nevada, Cascade, and Rocky Mountains). We show that annually averaged, satellite‐based observations of SIF (retrieved from GOME‐2) were significantly correlated with annual GPP observed at eddy covariance towers over several years. Further, SIF responded quantitatively to drought‐induced mortality, suggesting that SIF may be capable of detecting ecosystem disturbance in coniferous forests

    Solar-Induced Fluorescence Detects Interannual Variation in Gross Primary Production of Coniferous Forests in the Western United States

    Get PDF
    Quantifying gross primary production (GPP), the largest flux of the terrestrial carbon cycle, remains difficult at the landscape scale. Evergreen needleleaf (coniferous) forests in the western United States constitute an important carbon reservoir whose annual GPP varies from year‐to‐year due to drought, mortality, and other ecosystem disturbances. Evergreen forest productivity is challenging to determine via traditional remote sensing indices (i.e., NDVI and EVI), because detecting environmental stress conditions is difficult. We investigated the utility of solar‐induced chlorophyll fluorescence (SIF) to detect year‐to‐year variation in GPP in four coniferous forests varying in species composition in the western United States (Sierra Nevada, Cascade, and Rocky Mountains). We show that annually averaged, satellite‐based observations of SIF (retrieved from GOME‐2) were significantly correlated with annual GPP observed at eddy covariance towers over several years. Further, SIF responded quantitatively to drought‐induced mortality, suggesting that SIF may be capable of detecting ecosystem disturbance in coniferous forests

    Health, Health-Related Quality of Life, and Quality of Life: What is the Difference?

    Get PDF
    The terms health, health-related quality of life (HRQoL), and quality of life (QoL) are used interchangeably. Given that these are three key terms in the literature, their appropriate and clear use is important. This paper reviews the history and definitions of the terms and considers how they have been used. It is argued that the definitions of HRQoL in the literature are problematic because some definitions fail to distinguish between HRQoL and health or between HRQoL and QoL. Many so-called HRQoL questionnaires actually measure self-perceived health status and the use of the phrase QoL is unjustified. It is concluded that the concept of HRQoL as used now is confusing. A potential solution is to define HRQoL as the way health is empirically estimated to affect QoL or use the term to only signify the utility associated with a health state

    Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Priscu, J. C., Kalin, J., Winans, J., Campbell, T., Siegfried, M. R., Skidmore, M., Dore, J. E., Leventer, A., Harwood, D. M., Duling, D., Zook, R., Burnett, J., Gibson, D., Krula, E., Mironov, A., McManis, J., Roberts, G., Rosenheim, B. E., Christner, B. C., Kasic, K., Fricker, H. A., Lyons, W. B., Barker, J., Bowling, M., Collins, B., Davis, C., Gagnon, A., Gardner, C., Gustafson, C., Kim, O-S., Li, W., Michaud, A., Patterson, M. O., Tranter, M., Ryan Venturelli, R., Trista Vick-Majors, T., & Elsworth, C. Scientific access into Mercer Subglacial Lake: scientific objectives, drilling operations and initial observations. Annals of Glaciology, 62(85–86), (2021): 340–352, https://doi.org/10.1017/aog.2021.10.The Subglacial Antarctic Lakes Scientific Access (SALSA) Project accessed Mercer Subglacial Lake using environmentally clean hot-water drilling to examine interactions among ice, water, sediment, rock, microbes and carbon reservoirs within the lake water column and underlying sediments. A ~0.4 m diameter borehole was melted through 1087 m of ice and maintained over ~10 days, allowing observation of ice properties and collection of water and sediment with various tools. Over this period, SALSA collected: 60 L of lake water and 10 L of deep borehole water; microbes >0.2 μm in diameter from in situ filtration of ~100 L of lake water; 10 multicores 0.32–0.49 m long; 1.0 and 1.76 m long gravity cores; three conductivity–temperature–depth profiles of borehole and lake water; five discrete depth current meter measurements in the lake and images of ice, the lake water–ice interface and lake sediments. Temperature and conductivity data showed the hydrodynamic character of water mixing between the borehole and lake after entry. Models simulating melting of the ~6 m thick basal accreted ice layer imply that debris fall-out through the ~15 m water column to the lake sediments from borehole melting had little effect on the stratigraphy of surficial sediment cores.This material is based upon work supported by the US National Science Foundation, Section for Antarctic Sciences, Antarctic Integrated System Science program as part of the interdisciplinary (Subglacial Antarctic Lakes Scientific Access (SALSA): Integrated study of carbon cycling in hydrologically-active subglacial environments) project (NSF-OPP 1543537, 1543396, 1543405, 1543453 and 1543441). Ok-Sun Kim was funded by the Korean Polar Research Institute. We are particularly thankful to the SALSA traverse personnel for crucial technical and logistical support. The United States Antarctic Program enabled our fieldwork; the New York Air National Guard and Kenn Borek Air provided air support; UNAVCO provided geodetic instrument support. Hot water drilling activities, including repair and upgrade modifications of the WISSARD hot water drill system, for the SALSA project were supported by a subaward from the Ice Drilling Program of Dartmouth College (NSF-PLR 1327315) to the University of Nebraska-Lincoln. J. Lawrence assisted with manuscript preparation. Finally, we are grateful to C. Dean, the SALSA Project Manager, and R. Ricards, SALSA Project Coordinator at McMurdo Station, for their organizational skills, and B. Huber of Lamont-Doherty Earth Observatory for providing the SBE39 PT sensors and the Nortek Aquadopp current meter and assisting with interpretation of the data. B. Huber also provided helpful input on programing and calibrating the SBE19PlusV2 6112 CTD

    Is looped nasogastric tube feeding more effective than conventional nasogastric tube feeding for dysphagia in acute stroke?

    Get PDF
    Background: Dysphagia occurs in up to 50% of patients admitted to hospital with acute strokes with up to 27% remaining by seven days. Up to 8% continue to have swallowing problems six months after their stroke with 1.7% still requiring enteral feeding. Nasogastric tubes (NGT) are the most commonly used method for providing enteral nutrition in early stroke, however they are easily and frequently removed leading to inadequate nutrition, early PEG (Percutaneous Endoscopic Gastrostomy) insertion or abandoning of feeding attempts. Looped nasogastric tube feeding may improve the delivery of nutrition to such patients. Methods: Three centre, two arm randomised controlled trial, with 50 participants in each arm comparing loop (the intervention) versus conventional nasogastric tube feeding. The primary outcome measure is proportion of intended feed delivered in the first 2 weeks. The study is designed to show a mean increase of feed delivery of 16% in the intervention group as compared with the control group, with 90% power at a 5% significance level. Secondary outcomes are treatment failures, mean volume of feed received, adverse events, cost-effectiveness, number of chest x-rays, number of nasogastric tubes and tolerability
    corecore