249 research outputs found
Solving Games with Functional Regret Estimation
We propose a novel online learning method for minimizing regret in large
extensive-form games. The approach learns a function approximator online to
estimate the regret for choosing a particular action. A no-regret algorithm
uses these estimates in place of the true regrets to define a sequence of
policies.
We prove the approach sound by providing a bound relating the quality of the
function approximation and regret of the algorithm. A corollary being that the
method is guaranteed to converge to a Nash equilibrium in self-play so long as
the regrets are ultimately realizable by the function approximator. Our
technique can be understood as a principled generalization of existing work on
abstraction in large games; in our work, both the abstraction as well as the
equilibrium are learned during self-play. We demonstrate empirically the method
achieves higher quality strategies than state-of-the-art abstraction techniques
given the same resources.Comment: AAAI Conference on Artificial Intelligence 201
Interannual variation in seasonal drivers of soil respiration in a semi-arid Rocky Mountain meadow
pre-printSemi-arid ecosystems with annual moisture inputs dominated by snowmelt cover much of the western United States, and a better understanding of their seasonal drivers of soil respiration is needed to predict consequences of climatic change on soil CO2 efflux. We assessed the relative importance of temperature, moisture, and plant phenology on soil respiration during seasonal shifts between cold, wet winters and hot, dry summers in a Rocky Mountain meadow over 3.5 separate growing seasons. We found a consistent, unique pattern of seasonal hysteresis in the annual relationship between soil respiration and temperature, likely representative for this ecosystem type, and driven by (1) continued increase in soil T after summer senescence of vegetation, and (2) reduced soil respiration during cold, wet periods at the beginning versus end of the growing season. The timing of meadow senescence varied between years with amount of cold season precipitation, but on average occurred days before soil temperature peaked in late-summer. Autumn soil respiration was greatest when substantial autumn precipitation events occurred early. Surface CO2 efflux was temporarily decoupled from respiratory production during winter 2006/2007, due to effects of winter surface snow and ice on mediating the diffusion of CO2 from deep soil horizons to the atmosphere. Upon melt of a capping surface ice layer, release of soil-stored CO2 was determined to be 65 g C, or *10 % of the total growing season soil respiration for that year. The shift between soil respiration sources arising from moisture-limited spring plant growth and autumn decomposition indicates that annual mineralization of soil carbon will be less dependent on projected changes in temperature than on future variations in amount and timing of precipitation for this site and similar semiarid ecosystems
Sunscreen Use for Skin Cancer Prevention
Daily sunscreen use reduces the incidence of squamous cell carcinoma but not the incidence of basal cell carcinoma. (Strength of Recommendation [SOR]: B, based on a single randomized controlled trial with less than 13 years of follow-up). It is unclear whether there are longer-term effects. There is no consistent, conclusive evidence that sunscreen use prevents melanoma. (SOR: C, meta-analysis of case-control studies)
Exercise Training to Target Gait Unsteadiness in People with Diabetes
Balance impairment and an associated high fall rate in people with diabetes is common, and a huge burden to quality of life and healthcare systems. Causes of impaired balance are commonly attributed to both sensory and motor deficits, which includes impaired muscle strength and function. This study investigated the effects of resistance exercise training on balance control during walking over level ground and on stairs. Ten DM people (age: 62 years, BMI: 29kg/m2, VPT: 9V) and 6 DM people with DPN (age: 59 years, BMI: 27kg/m2, VPT: 31V) performed a 16-week intervention of weekly resistance exercise training to increase ankle and knee extensor muscle strength. Six DM controls did not take part in the intervention (age: 50 years, BMI: 26kg/m2, VPT: 12V). Balance during gait was quantified before and after the intervention, by separation between the body centre-of-mass and centre-of-pressure under the feet during both level and stair walking. Knee and ankle extensor muscle strength was assessed using a dynamometer. The exercise intervention increased strength of ankle plantar flexors (22%) and knee extensors (30%). Despite the increases in lower limb muscle strength produced by the intervention, no improvements in balance were seen post training. However, gait speed did increase by 8%, which previous research has shown to be associated with quality of life. Controls showed no training effects in any variables. Although this exercise intervention had a positive effect on gait by increasing walking speed, there was no effect on the control of balance. Previous research has identified that medio-lateral (side-to-side) balance is impaired in people with DPN. The muscles exercised in the present study mainly control the major sagittal plane (forwards-backwards) movements that occur during gait. Interventions targeting the lateral stabilising muscles of the hip and trunk, may show greater potential efficacy in redressing the balance impairment of this population
Acute Effects of Vibrating Insoles on Dynamic Balance and Gait Quality in Individuals With Diabetic Peripheral Neuropathy: A Randomized Crossover Study
OBJECTIVE This study investigated the effects of vibrating insoles on dynamic balance and gait quality during level and stair walking and explored the influence of vibration type and frequency in individuals with diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS Twenty-two men with DPN were assessed for gait quality and postural and dynamic balance during walking and stair negotiation using a motion capture system and force plates across seven vibratory insole conditions (Vcs) versus a control (Ctrl) condition (insole without vibration). Vibration was applied during standing and walking tasks, and 15-min rest-stop periods without vibration were interposed between conditions. Repeated measures test conditions were randomized. The primary outcomes were gait speed and dynamic balance. RESULTS Gait speed during walking significantly improved in all Vcs compared with Ctrl (P < 0.005), with Vc2, Vc4, and Vc6 identified as the most effective. Gait speed increased (reflecting faster walking) during stair ascent and descent in Vc2 (Ctrl vs. Vc2 for ascent 0.447 ± 0.180 vs. 0.517 ± 0.127 m/s; P = 0.037 and descent 0.394 ± 0.170 vs. 0.487 ± 0.125 m/s; P = 0.016), Vc4 (Ctrl vs. Vc4 for ascent 0.447 ± 0.180 vs. 0.482 ± 0.197 m/s; P = 0.047 and descent 0.394 ± 0.170 vs. 0.438 ± 0.181 m/s; P = 0.017), and Vc6 (Ctrl vs. Vc6 for ascent 0.447 ± 0.180 vs. 0.506 ± 0.179 m/s; P = 0.043 and descent 0.394 ± 0.170 vs. 0.463 ± 0.159 m/s; P = 0.026). Postural balance improved during quiet standing with eyes closed in Vc2, Vc4, Vc6, and Vc7 (P < 0.005). CONCLUSIONS Vibrating insoles are an effective acute strategy for improving postural balance and gait quality during level walking and stair descent in individuals with DPN. These benefits are particularly evident when the entire plantar foot surface is stimulated
The role of foot pressure measurement in the prediction and prevention of diabetic foot ulceration – a comprehensive review
Diabetic foot ulcers (DFU) are a costly public health concern. The predominant risk factor, peripheral neuropathy, results in loss of protective sensation and is associated with abnormally high plantar pressures. DFU prevention strategies, including orthotics and footwear, strive to reduce these high plantar pressures. Nevertheless, several constraints should be acknowledged regarding the research supporting the link between plantar pressure and DFUs. The majority of studies assess vertical, rather than shear, barefoot plantar pressure in laboratory-based environments, rather than during daily activity. Few studies investigated previous DFU location-specific pressure. Previous studies focus predominantly on walking, although studies monitoring activity suggest that more time is spent on other weight-bearing activities, where a lower ‘peak’ pressure might be applied on the foot over a longer duration. Although further research is needed, this may indicate that an expression of cumulative pressure applied over time, such as pressure-time integral, could be a more relevant parameter than peak pressure. A few studies have indicated that providing pressure feedback to the patient might reduce plantar pressures, with an emerging potential use of smart technology. However, further research is required to determine the efficacy of this approach. Constraints of previous plantar pressure research may explain its low prediction ability for DFU as part of prospective studies. Further vertical and shear pressure analyses, across all weight-bearing activities and referring to location-specific pressures are required to improve our understanding of pressures resulting in DFUs and to help improve effectiveness of interventions, such as therapeutic footwear and pressure-feedback
RNAi as a management tool for the western corn rootworm, \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e
The western corn rootworm (WCR), Diabrotica virgifera virgifera, is the most important pest of corn in the US Corn Belt. Economic estimates indicate that costs of control and yield loss associated with WCR damage exceed $US 1 billion annually. Historically, corn rootworm management has been extremely difficult because of its ability to evolve resistance to both chemical insecticides and cultural control practices. Since 2003, the only novel commercialized developments in rootworm management have been transgenic plants expressing Bt insecticidal proteins. Four transgenic insecticidal proteins are currently registered for rootworm management, and field resistance to proteins from the Cry3 family highlights the importance of developing traits with new modes of action. One of the newest approaches for controlling rootworm pests involves RNA interference (RNAi). This review describes the current understanding of the RNAi mechanisms in WCR and the use of this technology for WCR management. Further, the review addresses ecological risk assessment of RNAi and insect resistance management of RNAi for corn rootworm
RNAi as a management tool for the western corn rootworm, \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e
The western corn rootworm (WCR), Diabrotica virgifera virgifera, is the most important pest of corn in the US Corn Belt. Economic estimates indicate that costs of control and yield loss associated with WCR damage exceed $US 1 billion annually. Historically, corn rootworm management has been extremely difficult because of its ability to evolve resistance to both chemical insecticides and cultural control practices. Since 2003, the only novel commercialized developments in rootworm management have been transgenic plants expressing Bt insecticidal proteins. Four transgenic insecticidal proteins are currently registered for rootworm management, and field resistance to proteins from the Cry3 family highlights the importance of developing traits with new modes of action. One of the newest approaches for controlling rootworm pests involves RNA interference (RNAi). This review describes the current understanding of the RNAi mechanisms in WCR and the use of this technology for WCR management. Further, the review addresses ecological risk assessment of RNAi and insect resistance management of RNAi for corn rootworm
Insurance-Based Differences in Time to Diagnostic Follow-up after Positive Screening Mammography
Insurance may lengthen or inhibit time to follow-up after positive screening mammography. We assessed the association between insurance status and time to initial diagnostic follow-up after a positive screening mammogram
Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound.</p> <p>Methods</p> <p>Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37°C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room.</p> <p>Results</p> <p>There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (<it>p </it>< 0.001) increase in microbial counts post hydrodebridement. Levels ranging from 950 colony forming units per meter cubed (CFUs/m<sup>3</sup>) to 16780 CFUs/m<sup>3 </sup>were observed with active sampling of the air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m<sup>3</sup>. During removal of the wound dressing, a significant increase was observed relative to basal counts (<it>p </it>< 0.05). Microbial load of the air samples was still significantly raised 1 hour post-therapy.</p> <p>Conclusion</p> <p>The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.</p
- …