17 research outputs found

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Stabilizers of the max homodimer identified in virtual ligand screening inhibit myc function

    No full text
    ABSTRACT Many human cancers show constitutive or amplified expression of the transcriptional regulator and oncoprotein Myc, making Myc a potential target for therapeutic intervention. Here we report the down-regulation of Myc activity by reducing the availability of Max, the essential dimerization partner of Myc. Max is expressed constitutively and can form unstable homodimers. We have isolated stabilizers of the Max homodimer by applying virtual ligand screening (VLS) to identify specific binding pockets for small molecule interactors. Candidate compounds found by VLS were screened by fluorescence resonance energy transfer, and from these screens emerged a potent, specific stabilizer of the Max homodimer. In vitro binding assays demonstrated that the stabilizer enhances the formation of the Max-Max homodimer and interferes with the heterodimerization of Myc and Max in a dose-dependent manner. Furthermore, this compound interferes with Myc-induced oncogenic transformation, Myc-dependent cell growth, and Myc-mediated transcriptional activation. The Max-Max stabilizer can be considered a lead compound for the development of inhibitors of the Myc network

    Stabilizers of the Max Homodimer Identified in Virtual Ligand Screening Inhibit Myc FunctionS⃞

    No full text
    Many human cancers show constitutive or amplified expression of the transcriptional regulator and oncoprotein Myc, making Myc a potential target for therapeutic intervention. Here we report the down-regulation of Myc activity by reducing the availability of Max, the essential dimerization partner of Myc. Max is expressed constitutively and can form unstable homodimers. We have isolated stabilizers of the Max homodimer by applying virtual ligand screening (VLS) to identify specific binding pockets for small molecule interactors. Candidate compounds found by VLS were screened by fluorescence resonance energy transfer, and from these screens emerged a potent, specific stabilizer of the Max homodimer. In vitro binding assays demonstrated that the stabilizer enhances the formation of the Max-Max homodimer and interferes with the heterodimerization of Myc and Max in a dose-dependent manner. Furthermore, this compound interferes with Myc-induced oncogenic transformation, Myc-dependent cell growth, and Myc-mediated transcriptional activation. The Max-Max stabilizer can be considered a lead compound for the development of inhibitors of the Myc network

    Identification of novel mammalian growth regulatory factors by genome-scale quantitative image analysis

    No full text
    Functional profiling technologies using arrayed collections of genome-scale siRNA and cDNA arrayed libraries enable the comprehensive global analysis of gene function. However, the current repertoire of high-throughput detection methodologies has limited the scope of cellular phenotypes that can be studied. In this report, we describe the systematic identification of mammalian growth-regulatory factors achieved through the integration of automated microscopy, pattern recognition analysis, and cell-based functional genomics. The effects of 7364 human and mouse proteins, encoded by individually arrayed cDNAs, upon proliferation and viability in U2OS osteosarcoma cells were evaluated in a live-cell, kinetic assay using quantitative image analysis. Overexpression of more than 86 cDNAs (1.15%) conferred dramatic increases in the proliferation, as determined cell enumeration. These included several known growth regulators, as well as previously uncharacterized ones (LRRK1, Ankrd25). In addition, novel functional roles for two genes (5033414D02Rik, 2810429O05Rik), now termed Gatp1 and Gatp2, respectively, were identified. Further analysis demonstrated that these encoded proteins promoted cellular proliferation and transformation in primary cells. Conversely, cells depleted for Gatp1 underwent apoptosis upon serum reduction, suggesting that Gatp1 is essential for cell survival under growth-factor-restricted conditions. Taken together, our findings offer new insight into the regulation of cellular growth and proliferation, and demonstrate the value and feasibility of assessing cellular phenotypes through genome-level computational image analysis

    Stakeholder Perspectives on Advancing Understanding of Prenatal Opioid Exposure and Brain Development From the iOPEN Consortium of the Healthy Brain and Child Development Study.

    No full text
    Introduction: There is a dire need for research regarding the implications of opioid use during pregnancy on fetal and childhood development to better inform both medical practice and policy. The Healthy Brain and Child Development Study will examine brain and behavioral development from birth through the first decade of life. Due to large scope and anticipated complexity of this initiative, an 18-month planning phase was implemented across 28 sites across the nation. A core element of the Phase I initiative involved the development of Stakeholder Advisory Committees to inform the next phase of the initiative. Methods: Phase I stakeholder meetings were conducted at Oregon Health and Science University, New York University Langone Medical Center, the University of Pittsburgh, and the University of Vermont to better understand perspectives and inform upcoming research. Despite differences in the structure of the stakeholder meetings by site, the overarching goals for the meetings included establishing relationships, gathering input, and learning about research engagement. Documents from each meeting were reviewed for location, duration, attendees, common research themes, and pertinent suggestions for improving research approaches. Results: All stakeholders had high levels of interest in research for pregnant people with substance use disorders and agreed on research priorities including collaboration, connection, communication, and support. Different stakeholders offered unique perspectives on various aspects of study design and themes that emerged through meetings. Discussion: Overall, there was excitement about the research, especially the opportunity to include the voices of people with lived experience; collaboration between providers, peer support specialists, patients, and others; and excitement around contributing to research that could elucidate new and pertinent findings in the realm of addiction medicine and child development. Sites also found that there is mistrust between people with substance use disorder and the medical system, and this could be addressed by including people with lived experience on the research team, forming connections, communicating clearly, training the research team in implicit bias, and practicing trauma-informed care. In conclusion, these stakeholder meetings provided valuable information for structuring upcoming studies; however, researchers would have benefitted from more time and more opportunities for in-person connection

    The SAURON Project - XX. The Spitzer [3.6] - [4.5] colour in early-type galaxies : Colours, colour gradients and inverted scaling relations

    Get PDF
    We investigate the [3.6]-[4.5] Spitzer-IRAC colour behaviour of the early-type galaxies of the SAURON survey, a representative sample of 48 nearby ellipticals and lenticulars. We investigate how this colour, which is unaffected by dust extinction, can be used to constrain the stellar populations in these galaxies. We find a tight relation between the [3.6] -[4.5] colour and effective velocity dispersion, a good mass indicator in early-type galaxies: ([3.6] -[4.5])(e) = (-0.109+/-0.007)log sigma(e) + (0.154+/-0.016). Contrary to other colours in the optical and near-infrared, we find that the colours become bluer for larger galaxies. The relations are tighter when using the colour inside r(e) (scatter 0.013 mag), rather than the much smaller r(e)/8 aperture (scatter 0.023 mag), due to the presence of young populations in the central regions. We also obtain strong correlations between the [3.6] -[4.5] colour and three strong absorption lines (H beta, Mgb and Fe 5015). Comparing our data with the models ofMarigo et al., which show that more metal rich galaxies are bluer, we can explain our results in a way consistent with results from the optical, by stating that larger galaxies are more metal rich. The blueing is caused by a strong CO absorption band, whose line strength increases strongly with decreasing temperature and which covers a considerable fraction of the 4.5-mu m filter. In galaxies that contain a compact radio source, the [3.6]-[4.5] colour is generally slightly redder (by 0.015+/-0.007 mag using the r(e)/8 aperture) than in the other galaxies, indicating small amounts of either hot dust, non-thermal emission, or young stars near the centre. We find that the large majority of the galaxies show redder colours with increasing radius. Removing the regions with evidence for young stellar populations (from the H beta absorption line) and interpreting the colour gradients as metallicity gradients, we find that our galaxies are more metal poor going outwards. The radial [3.6]-[4.5] gradients correlate very well with the metallicity gradients derived from optical line indices. We do not find any correlation between the gradients and galaxy mass; at every mass, galaxies display a real range in metallicity gradients. Consistent with our previous work on line indices, we find a tight relation between local [3.6]-[4.5] colour and local escape velocity. The small scatter from galaxy to galaxy, although not negligible, shows that the amount and distribution of the dark matter relative to the visible light cannot be too different from galaxy to galaxy. Due to the lower sensitivity of the [3.6]-[4.5] colour to young stellar populations, this relation is more useful to infer the galaxy potential than the Mgb-v(esc) relation.Peer reviewe
    corecore