7,706 research outputs found

    Investigation of tidal displacements of the Earth's surface by laser ranging to GEOS-3

    Get PDF
    An analysis of laser ranging data from three stations was carried out in an attempt to measure the geometric Earth tide. Two different approaches to the problem were investigated. The dynamic method computes pass to pass apparent movements in stations height relative to short arcs fitted to several passes of data from the same station by the program GEODYNE. The quasi-geometric method reduces the dependence on unmodelled satellite dynamics to a knowledge of only the radial position of the satellite by considering two station simultaneous ranging at the precise time that the satellite passes through the plane defined by two stations and the center of mass of the Earth

    Colors, magnitudes and velocity dispersions in early-type galaxies: Implications for galaxy ages and metallicities

    Get PDF
    We present an analysis of the color-magnitude-velocity dispersion relation for a sample of 39320 early-type galaxies within the Sloan Digital Sky Survey. We demonstrate that the color-magnitude relation is entirely a consequence of the fact that both the luminosities and colors of these galaxies are correlated with stellar velocity dispersions. Previous studies of the color-magnitude relation over a range of redshifts suggest that the luminosity of an early-type galaxy is an indicator of its metallicity, whereas residuals in color from the relation are indicators of the luminosity-weighted age of its stars. We show that this, when combined with our finding that velocity dispersion plays a crucial role, has a number of interesting implications. First, galaxies with large velocity dispersions tend to be older (i.e., they scatter redward of the color-magnitude relation). Similarly, galaxies with large dynamical mass estimates also tend to be older. In addition, at fixed luminosity, galaxies which are smaller, or have larger velocity dispersions, or are more massive, tend to be older. Second, models in which galaxies with the largest velocity dispersions are also the most metal poor are difficult to reconcile with our data. However, at fixed velocity dispersion, galaxies have a range of ages and metallicities: the older galaxies have smaller metallicities, and vice-versa. Finally, a plot of velocity dispersion versus luminosity can be used as an age indicator: lines of constant age run parallel to the correlation between velocity dispersion and luminosity.Comment: 12 pages, 9 figures. Accepted by A

    Sunyaev - Zel'dovich fluctuations from spatial correlations between clusters of galaxies

    Full text link
    We present angular power spectra of the cosmic microwave background radiation anisotropy due to fluctuations of the Sunyaev-Zel'dovich (SZ) effect through clusters of galaxies. A contribution from the correlation among clusters is especially focused on, which has been neglected in the previous analyses. Employing the evolving linear bias factor based on the Press-Schechter formalism, we find that the clustering contribution amounts to 20-30% of the Poissonian one at degree angular scales. If we exclude clusters in the local universe, it even exceeds the Poissonian noise, and makes dominant contribution to the angular power spectrum. As a concrete example, we demonstrate the subtraction of the ROSAT X-ray flux-limited cluster samples. It indicates that we should include the clustering effect in the analysis of the SZ fluctuations. We further find that the degree scale spectra essentially depend upon the normalization of the density fluctuations, i.e., \sigma_8, and the gas mass fraction of the cluster, rather than the density parameter of the universe and details of cluster evolution models. Our results show that the SZ fluctuations at the degree scale will provide a possible measure of \sigma_8, while the arc-minute spectra a probe of the cluster evolution. In addition, the clustering spectrum will give us valuable information on the bias at high redshift, if we can detect it by removing X-ray luminous clusters.Comment: 11 pages, 4 figures, submitted to Astrophysical Journa

    Is there a Supermassive Black Hole at the Center of the Milky Way?

    Full text link
    This review outlines the observations that now provide an overwhelming scientific case that the center of our Milky Way Galaxy harbors a supermassive black hole. Observations at infrared wavelength trace stars that orbit about a common focal position and require a central mass (M) of 4 million solar masses within a radius of 100 Astronomical Units. Orbital speeds have been observed to exceed 5,000 km/s. At the focal position there is an extremely compact radio source (Sgr A*), whose apparent size is near the Schwarzschild radius (2GM/c^2). This radio source is motionless at the ~1 km/s level at the dynamical center of the Galaxy. The mass density required by these observations is now approaching the ultimate limit of a supermassive black hole within the last stable orbit for matter near the event horizon.Comment: Invited review submitted to International Journal of Modern Physics D; 23 pages; 10 figure

    Chandra Observations of low velocity dispersion groups

    Full text link
    Deviations of galaxy groups from cluster scaling relations can be understood in terms of an excess of entropy in groups. The main effect of this excess is to reduce the density and thus luminosity of the intragroup gas. Given this, groups should also should show a steep relationship between X-ray luminosity and velocity dispersion. However, previous work suggests that this is not the case with many measuring slopes flatter than the cluster relation. Examining the group L_X:\sigma relation shows that much of the flattening is caused by a small subset of groups which show very high X-ray luminosities for their velocity dispersions (or vice versa). Detailed Chandra study of two such groups shows that earlier ROSAT results were subject to significant (~30-40%) point source contamination, but confirm that a significant hot IGM is present in these groups, although these are two of the coolest systems in which intergalactic X-ray emission has been detected. Their X-ray properties are shown to be broadly consistent with those of other galaxy groups, although the gas entropy in NGC 1587 is unusually low, and its X-ray luminosity correspondingly high for its temperature, compared to most groups. This leads us to suggest that the velocity dispersion in these systems has been reduced in some way, and we consider how this might have come about.Comment: Accepted for publication in Ap

    Dynamic model of gene regulation for the lac operon

    Get PDF
    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution

    Towards a Holistic View of the Heating and Cooling of the Intracluster Medium

    Full text link
    (Abridged) X-ray clusters are conventionally divided into two classes: "cool core" (CC) clusters and "non-cool core" (NCC) clusters. Yet relatively little attention has been given to the origins of this dichotomy and, in particular, to the energetics and thermal histories of the two classes. We develop a model for the entropy profiles of clusters starting from the configuration established by gravitational shock heating and radiative cooling. At large radii, gravitational heating accounts for the observed profiles and their scalings well. However, at small and intermediate radii, radiative cooling and gravitational heating cannot be combined to explain the observed profiles of either type of cluster. The inferred entropy profiles of NCC clusters require that material is preheated prior to cluster collapse in order to explain the absence of low entropy (cool) material in these systems. We show that a similar modification is also required in CC clusters in order to match their properties at intermediate radii. In CC clusters, this modification is unstable, and an additional process is required to prevent cooling below a temperature of a few keV. We show that this can be achieved by adding a self-consistent AGN feedback loop in which the lowest-entropy, most rapidly cooling material is heated so that it rises buoyantly to mix with material at larger radii. The resulting model does not require fine tuning and is in excellent agreement with a wide variety of observational data. Some of the other implications of this model are briefly discussed.Comment: 27 pages, 13 figures, MNRAS accepted. Discussion of cluster heating energetics extended, results unchange

    X-ray Spectra of the RIXOS source sample

    Get PDF
    We present results of an extensive study of the X-ray spectral properties of sources detected in the RIXOS survey, that is nearly complete down to a flux limit of 3e-14 cgs (0.5-2 keV). We show that for X-ray surveys containing sources with low count rate spectral slopes estimated using simple hardness ratios in the ROSAT band can be biased. Instead we analyse three-colour X-ray data using statistical techniques appropriate to the Poisson regime which removes the effects of this bias. We have then applied this technique to the RIXOS survey to study the spectral properties of the sample. For the AGN we find an average energy index of 1.05+-0.05 with no evidence for spectral evolution with redshift. Individual AGN are shown to have a range of properties including soft X-ray excesses and intrinsic absorption. Narrow Emission Line Galaxies also seem to fit to a power-law spectrum, which may indicate a non-thermal origin for their X-ray emission. We infer that most of the clusters in the sample have a bremsstrahlung temperature >3 keV, although some show evidence for a cooling flow. The stars deviate strongly from a power-law model but fit to a thermal model. Finally, we have analysed the whole RIXOS sample containing 1762 sources. We find that the mean spectral slope of the sources hardens at lower fluxes in agreement with results from other samples. However, a study of the individual sources demonstrates that the hardening of the mean is caused by the appearance of a population of very hard sources at the lowest fluxes. This has implications for the nature of the soft X-ray background.Comment: 31,LaTeX file, 2 PS files with Table 2 and 22 PS figures. MNRAS in pres
    corecore