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Abstract. Gene regulatory network is a collection of DNA which interact with each other
and with other matter in the cell. The lac operon is an example of a relatively simple genetic
networks and is one of the well-studied and best-understood structures in the Escherichia coli
bacteria. In this work we consider a deterministic model of the lac operon with a noise term
(representing the stochastic nature of the regulation). The model is written in terms of a system
of simultaneous first order differential equations with delay. We investigate an analytical and
numerical solution and analyse the range of values for the parameters corresponding to a stable
solution. We compare our results with other works on the lac system.

1. Introduction
In living organisms the genome plays a central role in controlling the cellular processes, such
as the response of a cell to environmental signals, the differentiation of cells and groups of cells
in the unfolding of developmental programmes, the replication of the DNA preceding the cell
division and many others [1, 2]. Proteins synthesized from genes may function as transcription
factors binding to regulatory sites of other genes, as enzymes catalyzing metabolic reactions,
or as components of signal transduction pathways. The degradation of proteins and immediate
DNA products can also be regulated in the cell. The proteins involved in the above regulatory
functions are produced by other genes. This gives rise to genetic regulatory systems, structured
by networks of regulatory interactions between DNA, RNA, proteins and small molecules. A
gene regulatory network is a collection of DNA which interact with each other and with other
matter in the cell. A simple network consists of one or more input gene, metabolic, and signaling
pathways, regulatory proteins that integrate the input signals, several target genes, and the RNA
and proteins produced from those target genes.

The lac operon [3] is an example of a relatively simple genetic network and is one of the
well-studied and best-understood structures in the Escherichia coli (E.coli). It consists of a
promoter, and operator region and three larger structural genes, lacZ, lacY and lacA, with a
preceding regulatory operon responsible for producing a repressor (R) protein. In the absence
of glucose available for cellular metabolism, but in the presence of external lactose (Le), lactose
is transported into the cell by a permease (P ). Intracellular lactose (L) is then broken down
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into allolactose (A) first and then glucose and galactose by the enzyme β-galactosidase (B). The
allolactose feeds back to bind with the lactose repressor and enable the transcription process to
proceed.

A number of mathematical models of the lac operon have been developed (see for example
[2, 4, 5, 6, 7, 10]. In this work we consider a deterministic model of the lac operon with a noise
term representing the stochastic nature of the regulation. The model is written in terms of a
system of simultaneous first order differential equations with delay. We investigate an analytical
and numerical solution and analyse the range of values for the parameters corresponding to a
stable solution. We compare our results with other works on the lac system.

2. The deterministic model
Deterministic models have been widely used to analyse genetic regulatory systems [1, 2, 4].
On many occasions they are described by a system of ordinary differential equations (ODE).
The ODEs formalism models the concentration of RNAs, proteins and other molecules by time
dependent variables. The interactions in the network have a form of functional and differential
relations between concentrations. The network dynamics can be described by Michaelis-Menten
enzyme kinetics [4]. Note that the deterministic model, based on differential equations, describes
an average response of the system. It assumes that the concentration varies continuously and
deterministically, both of which assumptions may be questionable in case of gene regulation
particularly of small systems, as the small number of molecules in such networks compromises
such assumption. For large systems there is a large number of gene responses and the gene
regulatory network can be realistically described with a set of deterministic differential equations.

Time delays are common and substantial in biochemical processes.They are essential for the
system as they can protect it against transient loss of input signal, improve the accuracy of
reading the information and filter non-beneficial pulses. However, time delays are not always
beneficial as they may play a negative role in the stability of the gene network.

First, we will consider the deterministic model (without noise) following the works by Mackey
et al [7, 8, 9, 10]. The model is written in terms of a system of simultaneous first order ODEs
with time delays (DDEs) and is based on Michaelis-Menten enzyme kinetics. The model [7]
consists of five DDEs describing the lactose system in e.coli of positive feedback,

dM

dt
= αMf(AτM ) + Γ0 − γ̃MM,

dB

dt
= αBe−µτBMτB − γ̃BB,

dA

dt
= αABh(L)− βABg(A)− γ̃AA,

dL

dt
= αLPh′(Le)− βL1Ph(L1)− βL2Bh(L2)− γ̃LL,

dP

dt
= αP e−µ(τP +τB)MτP +τB − γ̃P P.

Here M is the mRNA concentration, n is the number of molecules of allolactose required to
inactivate the repressor. Two time delays are included in this system, τM and τP . The factor
e−µτM accounts for the dilution of A through growth during the transcriptional period, where
µ is the rate of degradation. To consider the system without time delays, one can choose these
parameters to be 0. The parameters of the system, Ki, i = 1, 2, L, Le, αj , j = A,B, L,M, P and
βk, k = A,L, L1, L2 are deterministic mass-action kinetic rate constants. K1 is the equilibrium
constant for the repressor-allolactose reaction, K2 is the equilibrium constant for the operator-
repressor reaction, K = 1+K2Rtot, and Rtot is the total amount of repressor. The rate of change



of M is a balance between a production term αMf , where

f(AτM ) =
1 + K1(e−µτM AτM )n

K + K1(e−µτM AτM )n
(1)

h(L) =
L

KL + L
, g(A) =

A

KA + A
. (2)

The loss of rate of B is given by γ̃BB. Similarly, the loss of rate of M , A, L and P is represented
by γ̃M ,γ̃A, γ̃L and γ̃P respectively. The values of these parameters as well as parameters αM ,
αB , αA, αL and αP are estimated experimentally in [11].

This model is difficult to solve analytically and a simplified model was proposed in [8] with
a constant quantity of lactose inside the cell, L = const (equilibrium of internal and external
cellular lactose). Ignoring the dynamics of permease, P = const (assumed as a constant permease
concentration), leads to a system of three delayed DDEs with two delays,

dM

dt
= αMf(AτM )− γ̃MM, (3)

dB

dt
= αBe−µτBMτB − γ̃BB, (4)

dA

dt
= αABh(L)− βAg(A)− γ̃AA. (5)

The model has been tested the estimates for parameters of Ackers et al [11]. Details of the
numerical and analytical solution is given in [8].

At the steady state point (M∗, B∗, A∗), the delay differential are determined for τ = 0, and

dM

dt
= 0,

dB

dt
= 0,

dA

dt
= 0.

Thus, a definition of the steady state is given by

f(A∗) = θ
A∗[

h(L)− βA
αA

g(A∗)
] , (6)

where θ = γ̃M γ̃B γ̃A

αMαBe−µτB γ̃M γ̃B
The solution can be found graphically by plotting the left and right

hand sides of (1) and given on Figure 1. The dashed curve represent the left hand side (LHS), and
other three curves represents the right hand side (RHS) of 1. The intersection between the two
curves (RHS and LHS) gives the location of the steady state. The range 40µM ≤ L ≤ 55.4µM
has been used as in this range three steady state exist. The range of allolactose concentration
depends on h(L)− βA

αA
g(A∗) Â 0.

β-galactosidase regulatory pathway is the most essential of the regulatory mechanisms in
the lactose operon [3]. The behaviour of the β-galactosidase levels as a function of time are
simulated. The solution showed that the steady states display bistability. The steady states
are depending on the extracellular lactose concentration and growth rate. We have further
investigated the analytical and numerical solution of this simplified model and analysed the
range of values for the parameters corresponding to a stable solution. The stability is using
Routh-Huirwitz conditions [4].

Figure 9 presents the stable and unstable regions of the L − A space. The S -shaped curve
gives three steady states obtained from 1, the range for L is [40, 55.4]µM , the straight line is
obtained from (??), and the third curve is from equation η0 + ϑ < 0 and separates the region
where states are unstable. For the internal lactose concentration, when L = 45µM we have
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Figure 1. Steady state solutions of f(A) for
three values of the lactose.
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Figure 2. Numerical solution showing stable
and unstable regions in L−A space.

found three steady states: A∗ = 54.8 5.56 11.0256 B∗ = 0.0119 0.00027940
0.00063667 M∗ = 0.0237 0.00055673 0.0013 MATLAB dde23 routine and symbolic
toolbox were used for the numerical solutions. The bistability of the β-galactosidase versus time
is shown on Figure 3.
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Figure 3. Bistability of β-galactosidase.

3. Stochastic model
Gene expression is a complex process regulated at several stages in the synthesis of proteins.
Apart from the regulation of DNA transcription, RNA translation and post-translational
modification of proteins, gene expression is also part of the regulatory process. Gene regulation
is a stochastic process as first it happens in a living organism and there are many fluctuations
due to delay of response and other processes taking place in the same time.

For small systems, with a small number of genes (such as the lac), a stochastic model
is more appropriate, as the responses are few and their nature is probabilistic. However, a
compromise can be reached by using a deterministic model and adding a noise term to account
for the stochastic behaviors of the system. In this section we’ll apply the Langevin approach by
introducing a noise term [1, 2, 6, 4].



We have add noise term for the continuous time differential equations, if

dy

dt
= f(y)

To add noise
dy

dt
= f(y) + σ

dW

dt

where W is the vector of Winer processes, σ is the standerd deviation. Multiply both sides by
dt to get stochastic differential equation (SDE).

dy = f(y)dt + σdW

The simplest stochastic numerical approximation is the Euler Maruyama method by consider
Itô calculus SDE.

Times h = ti+1 − ti, where i = 0, ...., n

yi+t = yi + f(yi)h + σZi

√
h

where Zt are distributed random numbers (derivative of a Winer process) with mean 0 and
variance 1. This is Eular Maruyama method, and it is possible for higher order methods. We
have used this method for the lac operon model with out time delay.

dM

dt
= αM

1 + K1(A)n

K + K1(A)n
− γ̃MM + λ,

dB

dt
= αBM − γ̃BB + λ,

dA

dt
= αAB

L

KL + L
− βAB

A

KA + A
− γ̃AA + λ.

where λ = σZ
√

h, apply this equations to the Euler method by using Matlab and with different
numbers of σ.

3.1. Steady state analysis
The model of the lac operon is given by three nonlinear ODEs with time delay and parameter
gives

4. Discussion and further work
mRNAwithNoiseAndWithNoNoise.eps
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Figure 5. Stable solution.
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Figure 6. lac
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Figure 7. No delay
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Figure 8. No time delay
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Figure 9. Time delay.
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Figure 10. No delay
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Figure 11. Three
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