NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Irvestigation of Tidal Displacements
 of the Earth's Surface
 by Laser Ranging to GEOS-3

D. R. Bower
J. Halpenny
M. K. Paul
and
A. Lambert

April 1980

N/SA

National Aeronautics and Space Administration

Wallops Flight Center

Wallops Island, Virginia 23337
AC $804 \quad 824-3411$

Investigation of Tidal Displacements of the Earth's Surface by Laser Ranging to GEOS-3

D. R. Bower, J. Halpenny, M. K. Paul, and A. Lambert

Department of Energy, Mines and Resources
Earth Physics Branch
Gravity and Geodynamics Division
Dttawa, Ontario, Canada K1A OY3

N/SA

National Aeronautics and
Space Administration

Wallops Flight Center

Wallops Island, Virginia 23337
AC $804 \quad 824-3411$

We would like to acknowledge the contributions of Petr Vanicek and Inge Nesbó with respect to the plane-crossing concept used in the quasigeometric analysis method. Generous assistance from D. E. Smith and B. Putney of GSFC, Greenbelt, Maryland is gratefully acknowledged.

EXPERIMENTAL RESULTS

1. Dynamic method

Description
Results

2. Quasi-geometric method

Description
Results
CONCLUSTONS
APPENDIX

FIGURE CAPTIONS

Figure 1. Theoretical tidal displacements at Goddard, MD. Crosses indicate times of passes observed by Goddard laser during a three day period.

Figure 2. Theoretical differential tidal displacements between Goddard and Grand Turk Island. Crosses indicate the times of passes observed simultaneously by the Goddard and Grand Turk lasers.

Figure 3. Goddard apparent station movements in height (h), latitude (ϕ) and longitude (λ) for four 24 -hour arcs and one 36 -hour arc (identified by their 1975 day numbers). The reference arcs were generated using the GEM 8 geopotential model and corresponding force model parameters of Table 1. The standard error bars denote the uncertainty corresponding to the random components of the laser range residuals.

Figure 4. Goddard apparent station movements in height only for four 24hour arcs and one 36 -hour arc. The reference arcs are the same as those used for the results of Figure 3. The standard error bars denote the uncertainty corresponding to the laser range residuals after adjustment of station position. Errors of a fraction of a meter are denoted as one meter on the diagram. The character of the connecting lines identifies the 1975 day number by comparison with Figure 3.

Figure 5. Goddard apparent station movements in height only for five 24-hour arcs. The reference arcs were generated using the PGS 558 geopotential model and corresponding force model parameters of Table 1. All standard errors were less than the 15 cm denoted on the diagram. The character of the connecting lines identifies the 1975 day numbers.

Figure 6. Comparison of tenfold theoretical vertical movements (upper panel) with vertical movements recovered by the dynamic method (lower panel). All standard errors less than 0.10 m . The character of the connecting lines identifies the 1975 day number.

Figure 7. Coordinate system for proof of extremum method of station-plane identification. Ranging is done from stations A_{1} and A_{2} in the station-plane to the satellite at position σ. The origin is taken at the earth's center of mass.

INTRODUCTION

The ultimate objective of this investigation is the measurement of the tidal displacements of the solid earth by laser ranging to the GEOS-3 satellite. Confirmation of earth tide theory through surface measurements of gravity, tilt and strain has been difficult because of the perturbing influences of surface discontinuities, the poor distribution of stations and the lack of ocean tide information. A measurement of surface displacement by laser ranging, although not entirely immune from such effects, constitutes a more direct measurement of the tidal deformations and of the related Love numbers h_{n} and l_{n}. The accuracy of laser ranging to satellites has now reached a level of between 5 and 10 cm (Vonbun, 1977) and continuing improvements in the dynamic models for satellites and/or the distribution of laser stations should ultimately lead to the detection and measurement of the 30 to 40 cm geonetric earth tide.

The present investigation is restricted to the analysis of NASA laser ranging data from three stations at Goddard Space Flight Center, Greenbelt, Mary1and, Grand Turk Island, and Bermuda in the GEOS-3 "calibration area." Therefore, the necessary conditions for a purely geometric solution for relative station positions are not fulfilled (Escobal et al., 1973) and the determinations of station positions will depend to some extent on the accuracy of the model for the path of the satellite. Results by Smith et al. (1973) for the Beacon-C satellite and a single laser station have shown that the fit of an orbit to a series of satellite passes rarely equals the quality of the laser data. Trends could be seen in the residuals showing departures of 2 or 3 meters from the predicted orbit. Errors in the gravity field, station position or other aspects of the dynamic model were suspected. Our approach has been to determine the effects of errors in the predicted orbit on the measurement of station movements and to investigate a method designed to minimize the effect of those errors.

EXPECTED TLDAL DISPLACEMENTS

In general, the measured laser station-to-station distances are affected both by the tidal displacements of the earth's surface and by the direct effect of the tidal potential on the motion of the satellite. The influence on the orbit of the Beacon-C Satellite, for instance, by the solid-earth and ocean tides (characterized by the Love number k_{2} and a phese lag ϕ) were found by Smith, et al (1973) from an analysis of the perturbations in the inclination of the oruit. A subsequent fit to the laser range data, with this tidal effect included, (using $k \quad 0.245$ and $\phi=3: 2$ derived in the previous study) showed that the in rred mean heights of the laser station from 12 -hour arcs were not significantly affected. We are assuming in the present study, therefore, that any small errors in k_{2} and ϕ in the implementation of GEODYNE will be a second-order effect on the relative laser station-to-satellite distances for 24-hour arcs.

The theoretical vertical and horizontal displacements of the laser stations in the calibration area due to the solid-earth tide were computed using subroutines NOMAN 1 and, with a small modification, NOMAN 2 (Harrison, 1971). The geometric earth tide in the vicinity of Goddard has a theoretical peak-to-peak amplitude of about 40 cm in the radial direction and less than 5 cm in the tangential direction (Figure 1), whereas the theoretical peak-to-peak amplitude of differential displacements between Godderd and Grand Turk, for example, is 10 to 15 cm in the radial direction and less than 4 cm in the tangential direction (Figure 2). To a first approximation the earth tide at a laser tracking station can be considered constant over the few minutes of a satellite pass. Ideally, the time sequence of satellite passes depends only on the orbital period of the satellite, the rate of rotation of the earth and the latitude of the tracking station. In practice, problems with laser ranging equipment and the weather reduce the number of usable passes.

EXPERIMENTAL RESULTS

[^0]Figure 1. Theoretical tidal displacenents at Goddard, MD. Crosses indicate times of passes observed by
Goddard Laser during a three day period.

Figure 2.

dynamic method," employs 24 -hour arcs as references for determining pass-topass changes in apparent station position. By this method the apparent station movements due to errors in the predicted satellite track as well as the tides have been investigated by an analysis of single-station ranging to GEOS-3. A second approach, termed the quasi-geometric method, attempts to minimize the effects of unmodelled satellite dynamics on the determination of tidal displacements by considering two-station simultaneous ranging to GEOS-3 at the precise time that the satellite passes through the plane defined by the two stations and the center of mass of the earth. This approach takes advantage of the geometrical constraints imposed by two-station ranging and reduces the dependence on satelifte dynamics to the prediction of only the distance R_{0} from the earth's center of mass to the satellite.

1. Dynamic method

Description - This method employs 24 -hour arcs fitted to laser ranging data using the dynamic model incorporated in the NASA program GEODYNE (Martin and Serelis, 1975). 24 -hour arcs were chosen for the investigation because they were not inordinately expensive to compute, yet they are long enough to allow the tracking siation to sample one complete tidal cycle. Each 24-hour arc comprises 14 or 15 revolutions of the satellite but only four or five passes of ranging data.

Calcuations were carried out using force-model parameters and station coordinates supplied by NASA. Table 1 lists the two sets of parameters corresponding to the two geopotential models, GEM8 (Wagner et al., 1976) and PGS558 (D. Smith, personal communication, 1977 and Lerch et al., 1977) used during this investigation. In our implementation of GEODYNE, fitting an arc to data from four or five satellite passes corresponds to solving for a set of oix orbital parameters at a particular epoch and for a particular drag coefficient. Only the direct tidal perturbation at the GEOS-3 orbit is modelled in GEODYNE and not the tidal displacement of the tracking scation.

A least-squares iterative procedure was employed to compute the apparent position of the station with respect to the fitted arc from the laser ranging data taken over each single satellite pass. Two different methods were adopted:

TABLE 1

SUMMARY OF FORCE MODEL PAPAMETERS AND

STATION CUORDINATES USED IN GEODYNE

A. Earth Gravitational Potential Coefficients
(Coefficients through degree 30 and order 28)
B. Gravitational constant, G (meter $\mathrm{m}^{*} 3$ / seconds ${ }^{2} * 2$)
C. Other perturbations:

1. Lunar gravitation applied - ratio of lunar mass to earth mass
2. Solar gravitation applied - ratio of solar mass to Earth mass
3. Gravitation applied for otidr planets
4. Earth tides applied - 1urar and solar effects included
k2 amplitude
$k 2$ phase angle
k3 amplitude
5. Drag applied (D65 JAC(HIA 1965 static atmospheric density model used)

Drag coefficifent
6. Solar radiation pressure applied

- 1 AU solar radiation pressure (Newtons/meter **2)
- Reflectivity
- Satellite Cross Sectional Area (Meters **2)
- Satellite Mass (kilograms)
D. Goddard station position data (station 7063)

Coordinates - Spheroid height (meters) North latitude East longitude
$3.98600800 \mathrm{D}+14$
1.229997D-02
$3.329456 \mathrm{D}+05$

NONE
0.29
2.50°
0.0

Adjusted
4.500D-06
1.500
1.437
3.459D+02
17.241
$39^{\circ} 1^{\prime} 13^{\prime \prime} 3507$
$283^{\circ} 10^{\prime} 19^{\prime \prime} 7500$

TABLE 1 (Cont.)

```
E. Bermuda station position data (station 7067)
- Spheroid height (meters) North latitude East longitude
F. Grand Turk station position data (station 7068)
- Spheroid height (meters) North latitude East longitude
Earth ellipsoid - semi major axis (meters)
```

6378155.00 1./298.255
-24.091
$32^{\circ} 21^{\prime} 13!7636$
$295^{\circ} 20^{\prime} 37!$ '8585
-19.730
$21^{\circ} 27^{\prime} 37$ " 7762
$288^{\circ} 52^{\prime} 4: 9584$
6378145.00
1./298.255
(1) The atation was allowed to move if all tiree coordinates by solving for incremental adjustments $\Delta x, \Delta y, \Delta z$ Erom an approximate position x, y, z by the system of linear equations:

$$
2\left(x-x_{i}\right) \Delta x+2\left(y-y_{i}\right) \Delta y+2\left(z-z_{i}\right) \Delta z=s_{i}^{2}-p_{i}^{2}
$$

where S_{1} is the $i^{\text {th }}$ observed range to the satellite, p_{i} is the $i^{\text {th }}$ predicted range and x_{i}, y_{i}, z_{i} are the predicted earth fixed satelilite coordinates,
(2) The station was constrained to move in only the radial (height) direction by solving for incremental adjustments $\Delta x, \Delta z$ by the system of linear equations:

$$
2\left(x-x_{i}\right) \Delta x+2\left(z-z_{i}\right) \Delta z=s_{i}^{2}-p_{i}^{2}
$$

and constraint $(z / x) \Delta x-(x / r) \Delta z=0$ where r is the radius to the station.

These methods converge to less than 1 mm in two iterations when the initial position is less than 50 m in error.

Results - During the first year of laser ranging to GEOS-3 there were a number of 24 -hour periods during which several passes of the satellite were observed by the Goddard laser. Four 24 -hour arcs and one 36 -hour arc fitted to Goddard ranging data only were used as references for computing apparent station positions for situsle passes of the satellite. GEODYNE calculations using the GEM8 geopetential model, appropriate force model parameters and coordinates (Table 1) gave, during a pass, laser ranging residuals, having a small random component of amplitude about 5 cm , plus a systematic component departing 2 to 5 m from t^{\prime} arc. We believe that the random component indicates the precision of the laser ranging and the systematic component represents the inability of the computed satellite track to fit the laser data. The net R.M.S. residuals for the five arcs ranged from 0.45 m to 1.96 m .

Apparent station movements for Goddard were computed for all satellite passes of the five GEODYNE arcs according to the methods described in the previous section. Method 1, where three-dimensional station position adjustments are allowed for each pass, gave R.M.S. variations in Goddard station position from pass to pass of about 8 m in height and about 11 m in latitude and longitude (Figure 3). In this method the systematic components of the laser range residuals were completely absorbed into apparent station movements, leaving only a random component. The amplitude of the apparent movements depends on the amplitude of the systematic component of range residuals for the pass, on the geometry of the satellite path with respect to the laser station, and on the duration of tracking for each pass. In general, the single-pass station position is poorly detexmined in a direction normal to the surface containing the satellite path and the station. The resultilg large apparent movements in that direction make three-dimensional station position determinations unreliable for the purposes of the present experimenc: Method 2, where only changes in station height are allowed, gave significantly smaller apparent movements (Figure 4). Except for one short pass at a low elevation in arc $D 216 / 217$, the four 24 -hour arcs gave R.M.S. variations around 1 to 2 m in height. An offset in station height of about 15 m is seen, however, for part of the 36 -hour arc. This mechod does not absorb the systematic components of the range residuals into station movements, yet the estimated standard errors on the apparent movements are,in general,less than 1 m .

A further decrease in apparent station height movement was achieved by Method 2 by an improvement in the GEODYNE force model. Using geopotential model PGS 558 and appropriate station coordinates (Table 1), the random component remained the same but the overall R.M.S. residuals were reduced to between 0.14 m and 0.65 m for the five arcs (the 36 -hour arc $\mathrm{D} 207 / 208$ was reduced to a 24 -hour arc). Figure 5 shows the resulting apparent station movements for the five arcs, plotted on an expanded vertical scale. The R.M.S. variation in station height for the results of Figure 5 is 0.80 m and the corresponding value for the theoretical tidal movements is 0.11 m . The detection of vertical tidal movements by this method clearly zequires further improvements in the dynamic model for the satellite. However, the stability in station height is now good enough to allow the suitability of 24 -hour length

- Figure 5. Goddard apparent station movements in height only for five

arcs to be tested. In order to investigate the tendency of 24 -hour arcs to absorb the real tidal movements of the laser station, tenfold-amplified theoretical tidal movements in height were introduced into the laser ranging data before computation of the GEODYNE reference arcs. Figure 6 compares the induced height variations with those recovered by the method. Although movements up to 1 m are seen, they do not appear to be correlated with the input tides. It must be concluded that 24 -hour arcs are able to absorb the geometrical tidal movements of a single tracking station and that they are therefore not suitable as reference arcs for measurement of the geometric tides by the present method. The R.M.S. amplitude of adjustments in the orbital elements and the drag coefficient necessary to absorb the theoretical tides were found to be as follows: semi-major axis, 0.09 cm ; eccentricity, 0.019×10^{-6}; inclination, 4.7 milliarcseconds; right ascension of the node, 4.9 milliarcseconds; argument of perigee, 0.87 arcseconds; mean anomaly, 0.87 arcseconds; and drag coefficient, 0.28 . These adjustments are equivalent to a movement of the satellite orbit in space of the order of 20 cm in both the radial and tangential directions. The changes in orbital elements are smaller by two to three orders of magnitude than the variations in orbital elements of 6-hour, four pass, arcs for the Beacon-C satellite due to direct tidal perturbations on the satellite orbit (Smith et al., 1973). Future attempts to measure the geometric tide by the method outlined will require the selection of longer reference arcs that are incapable of absorbing the tidal movements of the tracking stations.

2. Quasi-Geometric Method

Description - This is a method for determining the radial distance from the earth's center of mass to each of two laser stations which are simultaneously ranging on a satellite. The radial distance to the satellite is assumed to have been determined independently by some other means. We use the term quasi-geometric because only the satellite radial distance must be known and this only for a few seconds as it crosses the plane defined by the laser stations and the center of the earth. This is normally the best predicted satellite coordinate and has the smallest rate of change; typical rates for GEOS-3 are 5-10 meters per second. The method is based on a concept
Figure 6. Comparison of tenfold theoretical vertical movements (upper

wuggested by Vanicek (private communication, 1975) and Nesbó (unpublished manuscript, 1975) for measuring the differential earth tide (Bower, 1976) between two simultaneously-ranging stations.

With reference to Figure 7 (see Appendix) it can be shown that at the instant that the satellite crosses the station planc ($g=0$) there is a non-linear relation involving only the parameters R_{m} (radius of mean station height), 2ω (angular separation of stations), $2 h$ (differential radius of stations), R_{0} (radial distance to satelifte), and S_{1}, S_{2} (the range distances from stations to the satellite) and not involving the parameters of satelife position x and g. By the cosine rule the laser ranges S_{1} and S_{2} from stations 1 and 2 to the satellite will be given by the equations:

$$
\begin{align*}
& S_{1}^{2}=R_{0}^{2}+\left(R_{m}+h\right)^{2}-2 R_{0}\left(R_{m}+h\right) \cos g \operatorname{Cos}(\omega+x) \\
& S_{2}^{2}=R_{0}^{2}+\left(R_{m}-h\right)^{2}-2 R_{0}\left(R_{m}-h\right) \cos g \operatorname{Cos}(\omega-x) \tag{1}
\end{align*}
$$

Setting $g=0$ and eliminating x from these equations, we obtain the following nonlinear relation in $R_{m}, \omega, h, R_{0}, S_{1}$, and S_{2} :

$$
\begin{align*}
& \sin ^{2} \omega\left[R_{m}\left\{2\left(R_{0}^{2}+R_{m}^{2}-h^{2}\right)-s_{1}^{2}-S_{2}^{2}\right\}+h\left(S_{1}^{2}-S_{2}^{2}\right)\right]+ \\
& 16 R_{0}^{2}\left(R_{m}^{2}-h^{2}\right)^{2} \tag{2}\\
& \sin ^{2} \omega \cos ^{2} \omega+\cos ^{2} \omega\left[h\left\{2\left(R_{0}^{2}-R_{m}^{2}+h^{2}\right)-s_{1}^{2}-s_{2}^{2}\right\}+\right. \\
& \left.\quad R_{m}\left(S_{1}^{2}-S_{2}^{2}\right)\right]^{2}=0
\end{align*}
$$

The instant that the satellite crosses the station-plane, where relation (2) holds, can be found either from a single pass fit to the range data by the program GEODYNE or by an extremum method employing the parameter h. By the extremum method, relation (2), although it only holds true at $g=0$, can be used to generate values of the parameter h for satellite position where $g \neq 0$. It can then be shown (see Appendix) that the instant of station plane crossing ($g=0$) is identified by the point when the computed h values reach an extremum.

Figure 7. Coordinate system for proof of extremum method of stationplane identification. Ranging is done from stations A_{1} and A_{2} in the station-plane to the satellite at position σ. The origin is taken at the earth's center of mass.

URIGINAL PAGE LS
OF POOR QUALITY

Before proceeding further we write the nonlineal equation (2) in terms of the non-time varying parts of the station radil, N_{1} and N_{2}, and the tidal Love number h_{2}. Thus:

$$
\begin{align*}
& R_{1 i}=N_{1}+h_{2} \tau_{1 i} \tag{3}\\
& R_{2 i}=N_{2}+h_{2} \tau_{2 i}
\end{align*}
$$

where $\tau_{1 i}$ and $\tau_{2 i}$ are the equilibrium tidal displasements of the stations in the radial directions, and:

$$
\begin{align*}
& R_{m i}=\left(R_{1 i}+R_{2 i}\right) / 2=\left(N_{1}+N_{2}\right) / 2+h_{2}\left(\tau_{1 i}+\tau_{2 i}\right) / 2 \tag{4}\\
& h_{i}=\left(R_{1 i}-R_{2 i}\right) / 2+h_{2}\left(\tau_{1 i}-\tau_{2 i}\right) / 2
\end{align*}
$$

Substituting expressions (4) into (2), and neglecting tidal variations in ω_{2} we obtain for the $i^{\text {th }}$ plane crossing a non-1inear equation in $R_{0 i}, S_{1 i}, S_{2 i}$, N_{1}, N_{2}, h_{2} and ω which we can represent by:

$$
\begin{equation*}
F_{i}\left(R_{o i}, S_{1 i}, S_{2 i}, N_{1}, N_{2}, \omega, h_{2}\right)=0 \tag{5}
\end{equation*}
$$

Here R_{01} is the radial distance to the satellite and $S_{1 i}$ and $S_{2 i}$ are the laser ranges from stations 1 and 2 to the satellite, all at the instant the satellite crosses the plane. Given four or more such plane crossings, separated sufficiently in time so that the coefficients of h_{2} are not simply a linear combination of the coefficients of N_{1} and N_{2}, we solve for N_{1}, N_{2}, ω, and h_{2} by the Newton Raphson method. We make a first estimate of the parameters $N_{1}^{0}, N_{2}, \omega^{\circ}$, and h_{2}^{n}, then improved values N_{1}, N_{2}, w, h_{2} are found by correcting the initial values by the amounts $\Delta N_{1}, \Delta N_{2}, \Delta \omega$, and Δh_{2} obtained by solving the following system of linear equations:

$$
\begin{align*}
& \frac{\partial F_{1}}{\partial N_{1}}\left(N_{1}^{0}\right) \Delta N_{1}+\frac{\partial F_{i}}{\partial N_{2}}\left(N_{2}^{\circ}\right) \Delta N_{2}+\frac{\partial F_{i}}{\partial \omega}\left(\omega^{\circ}\right) \Delta \omega+\frac{\partial F_{i}}{\partial h_{2}}\left(h_{2}^{\circ}\right) \Delta h_{2}= \\
& F_{i}\left(R_{0 i}, S_{1 i}, S_{2 i}, N^{\circ}, N_{2}^{\circ}, \omega^{\circ}, h_{2}^{\circ}\right) \tag{6}
\end{align*}
$$

$i=1,2 \ldots k$ where $k \geq 4$

Using the improved values of the unknown parameters a new set of differentials are calculated and the procedure is repeated until convergence is achieved.

Results - Laser ranging data from stations at Goddard, Grand Turk and Bermuda were examined for the presence of quasi-simultaneous measurements to GEOS-3 during plane crossings in the months of July and August in 1975 and February in 1976. Only five usable crossings were found throughout July and August and none at all in February. There were many other instances of plane crossings but, for these, laser data was not available from both stations.

Details regarding these five passes aro listed in lable 2. The time shown is approximately that of the plane crossing and the columns of partial derivatives are with respect to the function F described earlier. The plane is identified by numbers referring to the stations which define the piane, where 1, 2 and 3 refer to Goddard, Grand Turk and Bermuda respectively. The columns headed d_{1}, d_{2} and d_{3} are the calculated equilibrium radial displacements in meters at the three stations due to the earth tide (J.e., $\mathrm{h}_{2}=1.0$).

About the times of each pass, values of $R_{0}(t)$ were found from 24 -hour arcs calculated by program GEODYNE on the basis of Goddard range measurements only (see Section 1, Dynamic Method). A linear equation of the form of equation (6) but involving the unknuwna: $\Delta N_{2}, \Delta N_{3}, \Delta \omega_{13}, \Delta \omega_{23}$ and Δh_{2}, was obtained for each of the five plane crossings. The nominal values assumed for the station coordinates were those given in Table 1 . The result of solving the five simultaneous equations is given in Table 3 for four cases, where ΔR_{2} and ΔR_{3} are the calculated differences between the true radial distances to the laser stations determined here and the nominal distances assumed. Similarly, $\Delta \omega_{13}$ and $\Delta \omega_{23}$ are the differences between calculated and nominal station separations expressed in terms of great circle distance. ΔR_{0} represents the mean error in the predicted radial distance to the satellite for the five plane crossings. The result shown as Δh_{2} is that value of the Love number h_{2} which satisfies the five equations (i.e., $h_{2}^{0}=0$).

For Solution 1 the function $R_{0}(t)$ was assumed correct and ΔR_{0} was set equal to zero. It is known from seismological. evidence however that $h_{2} \simeq 0.615$.

TABLE 3
CALCULATED CORRECTIONS TO $R_{2}^{*}, R_{3}^{\circ}, \omega_{13}^{\circ}, \omega_{23}^{\circ}$, and R_{0}° CALCULATED h_{2} and STANDARD DEVIATIONS FOR FIVE PLANE CROSSINGS. (*denotes an enforced value).

X	Solution 1	Solution $1 A$	Solution 2	Solution $2 A$	$\sigma(X)$	$\frac{\partial X}{\partial R_{0}}$
ΔR_{2}	14.284	0.937	15.679	1.090	$15.335 \sigma\left(R_{0}\right)$	$6,1.79$
ΔR_{3}	1.148	-2.459	1.069	-2.874	$1.185 \sigma\left(R_{0}\right)$	1.670
$\Delta \omega_{13}$	-0.088	-0.948	0.047	-0.893	$1.107 \sigma\left(R_{0}\right)$	0.398
$\Delta \omega_{23}$	4.656	-0.541	5.026	-0.655	$6.962 \sigma\left(R_{0}\right)$	2.406
Δh_{2}	3.512	0.721	3.702	0.652	$4.984 \sigma\left(R_{0}\right)$	1.292
ΔR_{0}	$0.0 *$	$2.160 *$	$0.0 *$	$2.361 *$		

A second source of error in $R_{0}(t)$ considered was that due to the geometric effect of the earth tide on the helght of the Goddard laser. Since this geometric effect was not taken into account in fitting the five orbits, at least part of the geometric tide would be reflected in $R_{0}(t)$. The E-. Ftric tide for Godderd is given by $h_{2} d_{1}$ whera d_{1} is listed in Table 3. To dex.: mine the effect of this on our resuits the five simultancous equations were adjusted on the assumption that all of the geometric tide was reflected in $R_{0}(t)$ and the system of equations then solved as before. The results presented in solutions 2 and $2 A$ are the counterparts of solutions 1 and $1 A$ after this adjustment is made. Note that the sum of the squares of the errors shown for solution 2 A is slightly larger than for 1 A but h_{2} is closer to the theoretical value. Presumably the correct sclution would fall somewhere between solutions $1 A$ and 2A.

Estimates of the effect of random errors in $R_{0}(t)$ on the solutions are presented in column 6 in terms of the standard deviation of $R_{0}(t)$ about true values. If we suppose either that the nominal station coordinates adopted for this analysis are correct within $1-2 \mathrm{~m}$ or that the Love number is known to be 0.6 then the results suggest that $R_{0}(t)$ is systematically less than the true values by about 2.0 m with a much smaller random error.

CONCLUSIONS

The 5 cm precision of laser ranging measurement ie certainly adequate for the observation of the 40 cm geometric earth tide, or even the 15 cm differential tide between two stations which can observe a satelifte simultaneously. However, we cannot yet predict an orbit based on one tracking station and 24 hours of data which is stable enough to be used as a platform to observe the total tidal displacements.

The present dynamic model, employing gravitation field model PGS 558, fits 24-hours of laser data from a single station leaving systematic residuals during a pass of up to 1 meter, and resulting in apparent station movements in
height of comparable amplitude, thus hiding the tidal variation. But even in the absence of imperfections in the dynamic model, 24 -hour arcs would tend to absorb the tidal movements of a singie tracking station leaving the pass-topass apparent station heights unchanged. Longer arcs or arcs using data from more than one laser should be less likely to absorb the geometric tides, but they would be expected to fit the laser data less well.

The quasi-geometric method is influenced significantly less than the dynamic method by errors in the predicted satellite position because this method only requires a knowledge of the radius to the satellite and it is sen ifeive principally to the differential tidal displacements between laser stations. Due to the stringent conditions that must be met for a usable plane-crossing to occur, however, there has been difficulty in finding a sufficient number of plane crossings for a rigorous statistical test of this method as it is presently implemented. But, for five passes over the calibration area that satisfy the criteria, a good approximation to the theoretical Love number h_{2} is obtained when a systematic bias of 2.16 meters is ailowed in the radial distance to the satellite. This bias is justified independently by the assumption that the nominal station coordinates are correct within 1-2 m. The value of h_{2} appears to be reasonably insensitive co changes in the predicted radial distance to the satellite due to absorption of the tidal movements of Coddard by the GEODYNE reference arcs.

APPENDIX: PROOF OF THE EXTREMUM METHOD OF STATION-PLANE IDENTIFICATION

Let us consider a reference system of spherical coordinates with origin at the center of the earth 0 and axis $0 Z$ perpendicular to the plane $Q_{1} A_{1} O A_{2} Q_{2}$ passing through the center of the earth. The radial directions to the ground stations A_{1} and A_{2} are extended to points Q_{1} and Q_{2} such that $O Q_{1}=$ $\mathrm{OQ}_{2}=\mathrm{R}_{0}$, the radial distance of the satelilite at any instant from the center of the earth. $T * a x i s$ of meridional reference $O X$ in this plane bisects the angle $Q_{1} O_{2}$. Then, with g as the perpendicular arc firom the position σ, of the satellite to this plane and x as the arc from the foot of this perpendicular to the bjisector $0 X$, the coordinates of the satellite can be denoted as $\left(R_{0}, g, x\right)$. Also, A_{1} and A_{2} can be represented in the same system of reference by the coordinates $\left(R_{M}+h, 0,-\omega\right)$ and $\left(R_{M}-h, 0, \omega\right)$ respectively, where R_{M} is the mean radius to the ground stations, $2 h$ is their elevation difference and 2ω is the angle they subtend at the center of the earth. Then laser ranges S_{1} and S_{2} which are linear distances from the satellite σ to ground stations A_{1} and A_{2} respectively will be given by the equations

$$
\left.\begin{array}{l}
S_{1}^{2}=R_{0}^{2}+\left(R_{M}+h\right)^{2}-2 R_{0}\left(R_{M}+h\right) \operatorname{cosg} \cos (\omega+x) \tag{A1}\\
S_{2}^{2}+R_{0}^{2}+\left(R_{M}-h\right)^{2}-2 R_{0}\left(R_{M}-h\right) \cos g \cos (\omega-x)
\end{array}\right\}
$$

These are the bașic equations which are used to evaluate h from the observations S_{1} and S_{2}. In developing our method of solution for h, we assume that ω and R_{M} are constants which are known before-hand. Range observations S_{1} and S_{2} as well as the radial distance to the satellite R_{0} which vary with tine are assumed to be available at discrete instants of time.

The problem is not solvable in its present form since, corresponding to \mathfrak{n} given sets of $\left(S_{1}, S_{2}, R_{0}\right)$ values, we have n pairs of equations of the type (A1) involving $2 N+1$ unknowns viz., n difference $g^{\prime} s, n$ different $x^{\prime} s$ (as g and x vary with time) and a constant h. Thus, the number of unknowns being more than the number of equations by one, no unique solution for h will be possible until and unless an additioral condition for the problem is made availsble.

To obtain this, we consider a second pair of equations

$$
\left.\begin{array}{l}
S_{1}^{2}=R_{0}^{2}+\left(R_{M}+H\right)^{2}-2 R_{0}\left(R_{M}+H\right) \cos (\omega+X) \tag{A2}\\
S_{2}^{2}=R_{0}^{2}+\left(R_{M}-H\right)^{2}-2 R_{0}\left(R_{M}-H\right) \cos (\omega-X)
\end{array}\right\}
$$

where H, unlike h, and X, different from x, vary with time.

Eliminating X between the two equations in (A2), we can write

$$
\begin{align*}
16 R_{0}{ }^{2}\left(R_{M}{ }^{2}-H^{2}\right)^{2} \sin ^{2} \omega \cos ^{2} \omega= & \sin ^{2} \omega\left[R_{M}\left\{2\left(R_{0}{ }^{2}+R_{M}{ }^{2}-H^{2}\right)-S_{1}{ }^{2}-S_{2}{ }^{2}\right\}+\right. \\
& \left.H\left(S_{1}{ }^{2}-S_{2}{ }^{2}\right)\right]^{2}+\cos ^{2} \omega\left[H \left\{2\left(R_{0}{ }^{2}-R_{M}{ }^{2}+H^{2}\right)-\right.\right. \\
& \left.\left.\mathrm{S}_{1}{ }^{2}-\mathrm{S}_{2}{ }^{2}\right\}+R_{M}\left(\mathrm{~S}_{1}{ }^{2}-\mathrm{s}_{2}{ }^{2}\right)\right]^{2} \tag{A3}
\end{align*}
$$

from which H can be obtained when other quantities are known. We have developed a subroutine which computes H iteratively, starting from the initial value of $\mathrm{H}=0$.

If we assume the x-eliminate between the equations in (Al) can be formally written as

$$
\begin{equation*}
h=F\left(s_{1}, s_{2}, R_{0}, \text { cosg }\right) \tag{A4}
\end{equation*}
$$

then, the similar equation for H will be

$$
\begin{equation*}
H=F\left(S_{1}, S_{2}, R_{0}, 1\right) \tag{A5}
\end{equation*}
$$

which is another form of (A3).

Differentiating (A4) with respect to time t and remembering that h is independent of t, we have

$$
\begin{align*}
0= & \frac{\partial F}{\partial S_{1}}\left(S_{1}, S_{2}, R_{0}, \operatorname{cosg}\right) \dot{S}_{1}+\frac{\partial F}{\partial S_{2}}\left(S_{1}, S_{2}, R_{0}, \text { cosg }\right) \dot{S}_{2}+ \tag{A6}\\
& \frac{\partial F}{\partial R_{0}}\left(S_{1}, S_{2}, R_{0}, \operatorname{cosg}\right) \dot{R}_{0}+\frac{\partial F}{\partial \operatorname{cosg}}\left(S_{1}, S_{2}, R_{0}, \operatorname{cosg}\right)(-s i n g) \dot{g}
\end{align*}
$$

Substituting in (A6) $t=t_{0}$ corresponding to $g=0$, we have

$$
\begin{equation*}
0=\frac{\partial F}{\partial S_{2}}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{R}_{0}, 1\right) \dot{\mathrm{S}}_{1}+\frac{\partial F}{\partial \mathrm{~S}_{2}}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{R}_{0}, 1\right) \dot{\mathrm{S}}_{2}+\frac{\partial F}{\partial \mathrm{R}_{0}}\left(\mathrm{~S}_{1}, \mathrm{~S}_{2}, \mathrm{R}_{0}, 1\right) \dot{R}_{0} \tag{A7}
\end{equation*}
$$

which, when compared with the equation obtainable from differentiation of (A5) with respect to t, yields:

$$
\begin{equation*}
\dot{\mathrm{H}}=0 \text { when } \mathrm{g}=0 . \tag{A8}
\end{equation*}
$$

Consequently, from comparison of (A1) and (A2), we find that when $\dot{H}=0$ corresponding to $g=0, H=h$.

Thus, the equation (A8) is the additional relation that is needed to obtain h uniquely.

In practical computation, values of H are computed iteratively from each set of (S_{1}, S_{2}, R_{0}) values, using the subroutine based on (A3). The plot of these values of H against time would show a smooth curve with an extremum (i.e., $H=0$) occurring at the instant when the satellite crosses the vertical plane through the ground stations (i.e. $g=0$). For precise computation of this instant, four consecutive values of H are selected such that $H\left(t_{k+1}\right)$ and $H\left(t_{k+2}\right)$ are either both greater than or both less than $H\left(t_{k}\right)$ and $H\left(t_{k+3}\right)$. A third-degree polynomial in time is then fitted to these values of H to obtain the extremum value for H and this is the value of h we require. This part of the computation is implemented by a second subroutine.

REFERENCES

Bower, D. R., Geos-C and measurement of the Earth tide. A Symposium on Satellite Geodesy and Geodynamics, edited by Petr VaniEek. Publications of the Earth Physics Branch, Volume 45 - No. 3. Ottawa, Canada, 1976.

Escobal, P. R., Ong, K. M., von Roos, O. H., Shumate, M. S., Jaffe, R. M., Fliegel, H. F., and Muller, P. M., 3-D Multilateration: A precision Geodetic measurement system, Technical Memorandum 33-605, Jet Propulsion Laboratory, Pasadena, Ca., 1073.

Harrison, J. C., New computer programs for the calculation of earth tides, Co-operative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA, 1971.

Lerch, F. J., Brownd, J. E., and Klosko, S. M., Gravity model improvement using GEOS-3 Gem $9 \& 10$ (abstract), EOS AGU, $58(6), 371,1977$.

Martin, T. V. and Serelis, J. T., GEODYN systems operation description, Wolf Research and Development Group, Report for contract NAS 5-11735 MOD65, April 1975.

Smith, D. E., Kolenkiewice, R., Agreen, R. W. and Dunn, P. J., Dynamic techniques for studies of secular variations in position from ranging to satellites, Proc. Symposium on Earth's Gravitational Field and Secular Variations in Position, edited by R. S. Mather and P. V. AngusLeppan, University of New South Wales, Sydney, 291-314, 1973.

Vonbun, F. O., Goddard laser systems and their accuracies, Phil, Trans. R. Soc. Lond. A. 284, 443-450, 1977.

Wagner, C. A., Lerch, F. J., Brownd, J. E. and Richardson, J. A., Improvement in the geopotential derived from satellite and surface data (Gem 7 and 8), J. Geophys, Res., 82, 901-914, 1977.

[^1]
[^0]: Two different approaches to the problem of measuring tidal movements of laser tracking stations were investigated. One approach, termed "the'

[^1]: "For sale by the National Technical Information Service, Springfield, Virginia 22151

