11,737 research outputs found

    Galaxy bulges and their black holes: a requirement for the quenching of star formation

    Full text link
    One of the central features of the last 8 to 10 billion years of cosmic history has been the emergence of a well-populated red sequence of non-star-forming galaxies. A number of models of galaxy formation and evolution have been devised to attempt to explain this behavior. Most current models require feedback from supermassive black holes (AGN feedback) to quench star formation in galaxies in the centers of their dark matter halos (central galaxies). Such models make the strong prediction that all quenched central galaxies must have a large supermassive black hole (and, by association, a prominent bulge component). I show using data from the Sloan Digital Sky Survey that the observations are consistent with this prediction. Over 99.5% of red sequence galaxies with stellar masses in excess of 10^{10} M_{\sun} have a prominent bulge component (as defined by having a Sersic index n above 1.5). Those very rare red sequence central galaxies with little or no bulge (n<1.5) usually have detectable star formation or AGN activity; the fraction of truly quenched bulgeless central galaxies is <0.1% of the total red sequence population. I conclude that a bulge, and by implication a supermassive black hole, is an absolute requirement for full quenching of star formation in central galaxies. This is in agreement with the most basic prediction of the AGN feedback paradigm.Comment: 6 pages, 4 color figures (figure 1 is of slightly degraded quality). To appear in August 1 edition of the Astrophysical Journa

    Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon

    Get PDF
    The insulin-like growth factor signalling pathway is an important regulator of skeletal muscle growth. We examined the mRNA expression of components of the insulin-like growth factor (IGF) signalling pathway as well as Fibroblast Growth Factor 2 (FGF2) during maturation of myotubes in primary cell cultures isolated from fast myotomal muscle of Atlantic salmon (Salmo salar). The transcriptional regulation of IGFs and IGFBP expression by amino acids and insulin-like growth factors was also investigated. Proliferation of cells was 15% d(-1) at days 2 and 3 of the culture, increasing to 66% d(-1) at day 6. Three clusters of elevated gene expression were observed during the maturation of the culture associated with mono-nucleic cells (IGFBP5.1 and 5.2, IGFBP-6, IGFBP-rP1, IGFBP-2.2 and IGF-II), the initial proliferation phase (IGF-I, IGFBP-4, FGF2 and IGF-IRb) and terminal differentiation and myotube production (IGF2R, IGF-IRa). In cells starved of amino acids and serum for 72 h, IGF-I mRNA decreased 10-fold which was reversed by amino acid replacement. Addition of IGF-I and amino acids to starved cells resulted in an 18-fold increase in IGF-I mRNA indicating synergistic effects and the activation of additional pathway(s) leading to IGF-I production via a positive feedback mechanism. IGF-II, IGFBP-5.1 and IGFBP-5.2 expression was unchanged in starved cells, but increased with amino acid replacement. Synergistic increases in expression of IGFBP5.2 and IGFBP-4, but not IGFBP5.1 were observed with addition of IGF-I, IGF-II or insulin and amino acids to the medium. IGF-I and IGF-II directly stimulated IGFBP-6 expression, but not when amino acids were present. These findings indicate that amino acids alone are sufficient to stimulate myogenesis in myoblasts and that IGF-I production is controlled by both endocrine and paracrine pathways. A model depicting the transcriptional regulation of the IGF pathway in Atlantic salmon muscle following feeding is proposed.Publisher PDFPeer reviewe

    A computer simulation of oscillatory behavior in primary visual cortex

    Get PDF
    Periodic variations in correlated cellular activity have been observed in many regions of the cerebral cortex. The recent discovery of stimulus-dependent, spatially-coherent oscillations in primary visual cortex of the cat has led to suggestions of neural information encoding schemes based on phase and/or frequency variation. To explore the mechanisms underlying this behavior and their possible functional consequences, we have developed a realistic neural model, based on structural features of visual cortex, which replicates observed oscillatory phenomena. In the model, this oscillatory behavior emerges directly from the structure of the cortical network and the properties of its intrinsic neurons; however, phase coherence is shown to be an average phenomenon seen only when measurements are made over multiple trials. Because average coherence does not ensure synchrony of firing over the course of single stimuli, oscillatory phase may not be a robust strategy for directly encoding stimulus-specific information. Instead, the phase and frequency of cortical oscillations may reflect the coordination of general computational processes within and between cortical areas. Under this interpretation, coherence emerges as a result of horizontal interactions that could be involved in the formation of receptive field properties

    The millimetre variability of M81* -- Multi-epoch dual frequency mm-observations of the nucleus of M81

    Get PDF
    There are still many open questions as to the physical mechanisms at work in Low Luminosity AGN that accrete in the extreme sub-Eddington regime. Simultaneous multi-wavelength studies have been very successful in constraining the properties of SgrA*, the extremely sub-Eddington black hole at the centre of our Milky Way. M81*, the nucleus of the nearby spiral galaxy M81, is an ideal source to extend the insights obtained on SgrA* toward higher luminosity AGN. Here we present observations at 3 and 1 mm that were obtained within the framework of a coordinated,multi-wavelength campaign on M81*. The continuum emission from M81* was observed during three epochs with the IRAM Plateau de Bure Interferometer simultaneously at wavelengths of 3 and 1 mm. We present the first flux measurements of M81* at wavelengths around 1 mm. We find that M81* is a continuously variable source with the higher variability observed at the shorter wavelength. Also, the variability at 3 and 1 mm appears to be correlated. Like SgrA*, M81* appears to display the strongest flux density and variability in the mm-to-submm regime. There remains still some ambiguity concerning the exact location of the turnover frequency from optically thick to optically thin emission. The observed variability time scales point to an upper size limit of the emitting region of the order 25 Schwarzschild radii. The data show that M81* is indeed a system with very similar physical properties to SgrA* and an ideal bridge toward high luminosity AGN. The data obtained clearly demonstrate the usefulness and, above all, the necessity of simultaneous multi-wavelength observations of LLAGN.Comment: accepted for publication in A&

    B3 0003+387: AGN Marked Large-Scale Structure at z=1.47?

    Full text link
    We present evidence for a significant overdensity of red galaxies, as much as a factor of 14 over comparable field samples, in the field of the z=1.47 radio galaxy B3 0003+387. The colors and luminosities of the brightest red galaxies are consistent with their being at z>0.8. The radio galaxy and one of the red galaxies are separated by 5" and show some evidence of a possible interaction. However, the red galaxies do not show any strong clustering around the radio galaxy nor around any of the brighter red galaxies. The data suggest that we are looking at a wall or sheet of galaxies, possibly associated with the radio galaxy at z=1.47. Spectroscopic redshifts of these red galaxies will be necessary to confirm this large-scale structure.Comment: 19 pages, 7 figures, LaTeX2e/AASTeX v5.0.2. The full photometric catalog is included as a separate deluxetable file. To appear in the Astronomical Journal (~Nov 00

    Radio Variability of Sagittarius A* - A 106 Day Cycle

    Get PDF
    We report the presence of a 106-day cycle in the radio variability of Sgr A* based on an analysis of data observed with the Very Large Array (VLA) over the past 20 years. The pulsed signal is most clearly seen at 1.3 cm with a ratio of cycle frequency to frequency width f/Delta_f= 2.2+/-0.3. The periodic signal is also clearly observed at 2 cm. At 3.6 cm the detection of a periodic signal is marginal. No significant periodicity is detected at both 6 and 20 cm. Since the sampling function is irregular we performed a number of tests to insure that the observed periodicity is not the result of noise. Similar results were found for a maximum entropy method and periodogram with CLEAN method. The probability of false detection for several different noise distributions is less than 5% based on Monte Carlo tests. The radio properties of the pulsed component at 1.3 cm are spectral index alpha ~ 1.0+/- 0.1 (for S nu^alpha), amplitude Delta S=0.42 +/- 0.04 Jy and characteristic time scale Delta t_FWHM ~ 25 +/- 5 days. The lack of VLBI detection of a secondary component suggests that the variability occurs within Sgr A* on a scale of ~5 AU, suggesting an instability of the accretion disk.Comment: 14 Pages, 3 figures. ApJ Lett 2000 accepte
    • …
    corecore